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I propose to study several concrete problems within the broad context of noncommutative

analysis. The key objects of study will be noncommutative (nc) spaces and functions, and the

focus will be put on two kinds of models of nc function theory: the first revolving around matrix

convexity, and the second algebras of nc holomorphic functions on nc varieties. These two

objectives can be considered as the “real" and “complex" (analytic) versions of noncommutative

analysis, respectively.

Noncommutative real analysis. I will outline a plan to study the connections between

operator spaces and the geometry of matrix convex sets and matrix ranges, with emphasis on

two novel ingredients.

First, dilations will play a central and modified role. We will study how dilations and the

Choquet and Shilov boundaries of operator spaces reflect in the extreme geometry of matrix

convex sets, and search for concrete geometric characterization of operator-theoretic properties,

such as hyperrigidity. Dilations have further applications, revealing more structure than pre-

viously believed. For any pair of d-tuples A ∈ B(H)d and B ∈ B(K)d, we seek the optimal

constant c(A,B), such that a ∗-isomorphic copy of c(A,B) ·B is a dilation of A. The constants

c(A,B) can serve as a measure of distance between the operator algebras generated by the tu-

ples, and this point of view has already found surprising uses, e.g. to the continuity of spectra

of Schrodinger operators. This avenue will be developed.

A second novel ingredient that we propose, is the incorporation of free probability and random

matrix theory to the study of nc convex sets. Such a perspective allows us to ask and answer

exciting new questions, such as: what does a typical matrix range tend to look like?

Noncommutative complex analysis. A major objective of my previous proposal was to

study algebras of bounded nc analytic varieties in the nc unit ball, and to classify them up to

various kinds of isomorphisms, in nc geometric terms. This goal was achieved to a large extent,

and one of the successful byproducts was the development of nc function-theoretic tools, mainly

in the context of the nc unit ball. In the current proposal, I am setting the goal of pushing all of

these ambitions and results beyond the nc unit ball. Explicitly, I will study algebras of bounded

nc analytic functions on general nc domains and varieties. On the operator algebraic side, we

wish to obtain a classification scheme that covers a far richer class of nonselfadjoint operator

algebras than has been treated before. It is my hope — which is grounded on experience — that

this pursuit will also serve as an engine and a guiding light for the development of the theory of

analytic nc functions in several complex variables beyond its current frontiers.
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1. Scientific Background

1.1. Overview. Noncommutative analysis is concerned with the study of “noncommutative" objects

(e.g. operator algebras) by making use of ideas that originate in the study of “commutative" objects

(e.g. function algebras on topological spaces). On the one hand, a major goal is the generalization

of notions from the commutative to the noncommutative world, providing tools by which to pose and

tackle questions on noncommutative objects. On the other hand, one hopes that placing a commutative

entity within the extensive noncommutative perspective, will illuminate classical problems.

Within this broad perspective, I plan to examine several concrete problems in noncommutative (nc)

analysis. The key objects of study will be nc spaces and functions, and the focus will be put on two

models: the first emphasizing nc convexity, and the second algebras of nc analytic functions on nc

varieties. These can be considered as the “real" and “complex" versions of noncommutative analysis.

For both the real and the complex versions of nc analysis, there are several different competing

frameworks and points of view. A special role is played by the the abstract, “all encompassing" theories.

In Gelfand’s spirit, every algebra can be thought of as an algebra of functions on its representation

space. In the 1940s, Gelfand and Naimark proved that every commutative C*-algebra is an algebra

of continuous functions on a topological space. In the 1960s, Takesaki and then Bichteler proved that

every C*-algebra is an algebra of continuous “functions" on its space of representations. Davidson and

Kennedy recently developed an extensive theory of nc functions [31], using Takesaki and Bichteler’s

ideas to identify the continuous nc functions on a nc convex setK as the maximal C*-algebra generated

by the continuous nc affine functions on K. They generalize much of Choquet theory to the nc setting.

On the analytic side, Taylor developed a very general theory of nc functions [104, 105]. Taylor’s

noncommutative function theory grew out of his analytic functional calculus for tuples of commuting

operators. His starting point was the free algebra generated by d noncommuting elements. Certain

topological closures of this free algebra, called localizations, are the algebras of nc functions that one

would apply to tuples. Another attempt to develop nc function theory is due to Voiculescu.

With the abstract theories in mind, and perhaps also at hand, I will work in somewhat more

specialized frameworks, that have been developed in the past two decades. For analytic nc function

theory I will follow Kalyuzhnyi-Verbovetskii and Vinnikov [62], for whom a nc analytic function in

d variables is a graded map from d-tuples of n × n matrices in some “nc domain” that respects

similarity. There is overlap between this approach and other contributions made by Agler-McCarthy

[2, 3, 4], Davidson-Pitts [32, 33], Helton-Klep-McCullough [49], Muhly-Solel [75, 76, 78, 79], Popescu

[90, 91, 92, 93, 94, 95, 96], Jury-Martin [59, 60] and others (e.g. [15, 80, 81, 98, 99, 103]). The works of

Ball-Marx-Vinnikov on nc reproducing kernel Hilbert spaces [17, 18], and of Agler-McCarthy-Young

on nc manifolds [5] are important recent developments.
1
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For nc convexity, the framework we will use is by and large the one introduced by Wittstock [108]

and revived by Effros-Winkler [38], which has served several groups of researchers, e.g. Helton-Klep-

McCulough and co. [39, 40, 41, 51, 53, 54, 109] as well as others [42, 43, 66, 82, 83, 84, 107, 109].

My proposal consists of a series of problems that fall under the unifying theme of noncommutative

analysis. Some problems can be classified as “nc convexity" and some as “nc (analytic) function

theory". Each one is of inherent interest as well as possible applicability; the program as a whole

connects to the work of various noncommutative tribes, as well as to open problems. I believe that

the organic unity of this proposal will unfold as the problems are described below.

1.2. Basic definitions and notation.

1.2.1. NC sets. Let Mn = Mn(C) denote the set of all n×n matrices over C, and let Md
n be the set of

all d-tuples of such matrices. The “noncommutative universe" in which most of the action takes place

in is the disjoint union Md = ∪∞n=1M
d
n . A subset Ω ⊆ Md is called a free set. A free set Ω is said to

be a nc set if it is closed under direct sums and conjugation with unitaries. If Ω is a nc set, we denote

Ωn = Ω∩Md
n , and Ω = ∪∞n=1Ωn. The similarity envelope of a nc set Ω is the nc set Ω̃ consisting of all

tuples S−1XS similar to some X ∈ Ω (here and below S−1(X1, . . . , Xd)S = (S−1X1S, . . . , S
−1XdS)).

1.2.2. NC holomorphic functions. A function f from a nc set Ω ⊆Md to M1 is said to be a nc function

if: (i) f is graded: X ∈ Ωn ⇒ f(X) ∈Mn; (ii) f respects direct sums: f(X ⊕ Y ) = f(X)⊕ f(Y ); and

(iii) f respects similarities: if X ∈ Ωn, S ∈ GLn, and if S−1XS ∈ Ωn, then f(S−1XS) = S−1f(X)S.

A free polynomial is an element in C〈z1, . . . , zd〉 — the free algebra in d variables. Free polynomials

are the most important example of nc functions. To be specific, let F+
d be the free semigroup generated

by d generators g1, . . . , gd. For a word w = gi1 · · · gin ∈ F+
d , we write z

w = zi1 · · · zin . A free polynomial

is a finite sum p(z) =
∑
awz

w, where aw ∈ C. Sometimes we just say polynomial, omitting “free".

For X = (X1, . . . , Xd) ∈Md (or in fact for every X ∈ B(H)d) we can evaluate p at X by plugging in:

p(X) =
∑
awX

w, where Xw = Xi1 · · ·Xin . A matrix valued free polynomial is a finite sum of the form

p(z) =
∑

w Awz
w, where Aw ∈Mn. Evaluation at a tuple X is defined like so: p(X) =

∑
w Aw ⊗Xw.

A free set Ω is said to be open in the disjoint union topology if Ωn is open in Md
n for all n. The free

topology is generated by basic free open sets, which are sets of the form Gp := {X ∈Md : ‖p(X)‖ < 1},
where p is a matrix of polynomials. E.g., the d-dimensional open matrix unit ball Bd is defined to be

Gp for p(z) = [z1 z2 . . . zd], thus Bd = {X ∈ Md : ‖
∑
XjX

∗
j ‖ < 1}. The uniform topology, defined

naturally, is also useful. The choice of topology affects the following definition. A nc function defined

on a free open set Ω is said to nc analytic (or holomorphic) if it is locally bounded. It turns out that

a nc analytic function is an analytic function when considered as a function f : Ωn → Mn, for all n,

and moreover it has a nc “Taylor series” at every point [62]. A function f : Ωn → Mn is nc analytic

w.r.t. the free topology if and only if it is locally approximable by polynomials [2].

1.2.3. NC varieties. A nc algebraic variety is a free set of the form VΩ(S) = {X ∈ Ω : ∀p ∈ S . p(X) =

0}, where S ⊆ C〈z1, . . . , zd〉. Likewise, let us define a nc analytic variety in Ω to be the joint zero

set of a set of nc analytic functions on Ω. NC algebraic and analytic varieties are nc sets. We define

H∞(Ω) to be the algebra of bounded holomorphic functions on Ω, and A(Ω) to be the algebra of

bounded analytic functions that extend continuously to ∂Ω (and likewise for varieties).
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1.2.4. Matrix convex sets. A nc set S is said to be matrix convex if it is closed under the application of

UCP maps, i.e., whenever X is in Sn and φ ∈ UCP(Mn,Mk), the tuple φ(X) := (φ(X1), . . . , φ(Xd))

is in Sk. Equivalently, S is closed under matrix convex combinations. The main examples of matrix

convex sets are free spectrahedra and matrix ranges. A monic linear pencil is a matrix valued free

polynomial L(x) = LA(x) = I −
∑
Ajxj , where A ∈ B(H)d. We write DL (or DA) for the union

∪nDL(n), where DL(n) = {X = (Xj) ∈Md
n : ReL(X) ≥ 0}. The set DL is called a free spectrahedron

(some authors reserve “free spectrahedron” for matrix coefficients). Thematrix range [10] of a tupleA in

B(H)d is the set W(A) = ∪nWn(A), where Wn(A) = {(φ(A1), . . . , φ(Ad)) : φ ∈ UCP(C∗(SA),Mn)}.
A set S = ∪nSn ⊆Md is a bounded closed matrix convex set if and only if S =W(A) for some A [28].

1.2.5. Dilations and normal tuples. A d-tuple A ∈ B(H)d is called a compression of B ∈ B(K)d, and

B is called a dilation of A, if there is an isometry V : H → K such that Ai = V ∗BiV for 1 ≤ i ≤ d;

we then write A ≺ B. Dilations are especially useful when the dilating tuple is normal. A tuple

N = (N1, . . . , Nd) is called a normal tuple if N1, . . . , Nd are commuting normal operators. In this case

the C∗-algebra generated by N is commutative, and is isomorphic to the algebra C(X) of continuous

functions on the joint spectrum X = σ(N). If N acts on a finite dimensional space, σ(N) is just the

finite set of all d-tuples of joint eigenvalues.

1.3. Background results in nc convexity.

1.3.1. Interpolation and inclusions of matrix convex sets. The “nc universe” Md is useful for studying

problems that can be considered as “nc real algebraic geometry” such as the representation of positive

nc functions as sums of squares [49, 50, 51, 53, 54, 55]. Such problems were shown by Helton-Klep-

McCullough to be related to interpolation problems of unital completely positive (UCP) maps [51].

Interpolation problems for UCP maps, in turn, have been of great interest, because of their relationship

to quantum information theory and theoretical physics, as well as with operator algebras [6, 24, 70].

Moreover, sums of squares problems are related to some very deep problems, from Hilbert’s 17th

problem (“classical" real algebraic geometry), to Connes’ embedding problem [65]. Given two d-tuples

of operators A ∈ B(H)d and B ∈ B(K)d, the interpolation problem is: when does there exist a UCP

map φ : B(H) → B(K) such that φ(Ai) = Bi for all i? For matrix tuples A,B, assuming that DA
is bounded, such a map exists if and only if DA ⊆ DB [51]. Following Arveson [10], we showed that

there exists a UCP map φ : A → B if and only if W(B) ⊆ W(A) [28]. We also observed that W(A)

and DA are related by the Effros-Winkler matricial polar duality [38] via W(A)◦ = DA, and from this

we were able to deduce the above mentioned criterion for interpolation, as well as others, e.g., [70].

1.3.2. Minimal and maximal matrix convex sets. The results above motivate studying the problem of

when one matrix convex set contains another. Given a closed convex set K ⊆ Cd, the minimal matrix

convex setWmin(K) and the maximal matrix convex setWmax(K) for whichWmin
1 (K) =Wmax

1 (K) =

K were described in several places; we follow [28] (see also [43], [52] and [87]; analogous constructions

in the theory of operator spaces have appeared way back [85, 86]). One description for Wmax(K) is

{X ∈ Md :W1(X) ⊆ K}. The minimal matrix convex set Wmin(K) (called the matrix convex hull of

K in [52]) clearly exists, but here is a more useful description in terms of normal dilations (see [28]):

Wmin(K) = {X ∈Md : ∃N normal, s.t. X ≺ N and σ(N) ⊆ K}.
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1.3.3. Dilation constants. In [84] we introduced the dilation constants θ(K,L) = inf{C > 0 :Wmax(K)

⊆ C ·Wmin(L)} (where K,L are convex sets) and θ(K) := θ(K,K). We computed θ(K,L) for various

pairs. In particular, if Bp,d is the closed unit ‖ · ‖p-ball in Rd, then θ(Bp,d) = d1−|1/p−1/2|. Moreover,

we proved that θ(K) = 1 if and only if K is a simplex, improving on a result of Fritz-Netzer-Thom

who obtained this result for the case where K is a polytope. In fact, if Wmax
n (K) =Wmin

n (K) for any

n ≥ 2d−1 then K is a simplex. This was improved to n ≥ 2 [57] in the case where K is a polytope.

1.3.4. Dilations, boundaries, and matrix extreme points. Matrix convex sets correspond to operator

systems, and the matrix range of a tuple A determines the operator system it generates [10, 28, 43,

58, 84, 87]. In matrix convexity there are several notions of “extreme points". Webster and Win-

kler introduced the notion of matrix extreme point [107], and proved that a matrix convex set is the

matrix convex hull of its matrix extreme points. Farenick proved that this notion corresponds to

pureness of matrix states [42]. This played a role in Davidson and Kennedy’s proof [30] of existence

of boundary representations (aka nc Choquet boundary points [9, 10, 13]); these representations corre-

spond to irreducible matrix extreme points that cannot be dilated non-trivially (this observation goes

back to [37] and [74]), hence their proof relied on careful analysis of dilations. However, boundary

representations might appear “at infinity", thus remain undetected in matrix convex sets of the type

we consider. Evert-Helton-Klep-McCullough [41] defined a notion of Arveson extreme point, proved a

Krein-Milman type theorem for these, and also a sort of “Milman’s converse" [40] (which does not hold

in general [39]). In [83], we proved that incompressible compact tuples are determined by their matrix

ranges up to unitary equivalence, making use of all the above notions, as well as the C*-envelope

[9, 10, 30, 37, 86].

1.4. Background results in analytic nc function theory.

1.4.1. Universal algebras for relations. In [102] we considered universal tuples for homogeneous ideals

in noncommuting variables, and this led in [34, 46] to the classification up to isometric isomorphism

of universal operator algebras generated by a commuting row contraction satisfying the relations in a

homogeneous ideal. For a homogeneous ideal I / C〈z1, . . . , zd〉, denote by AI the universal operator

algebra generated by a row contraction S such that p(S) = 0 for all p ∈ I. We proved: AI and AJ are

isometrically isomorphic if and only if I and J are related by a unitary change of variables. The same

results hold when one specializes to commuting variables, but then we can say more. For an ideal

I / C[z1, . . . , zd], let VBd(I) = {z ∈ Bd : ∀p ∈ I.p(z) = 0}. If I and J are radical homogeneous ideals

then AI is isometrically isomorphic to AJ if and only if there is unitary mapping VBd(I) onto VBd(J);

moreover, AI and AJ are isomorphic if and only if there is a linear bijection A : VBd(J) → VBd(I).

The same results hold for the wot closures of the algebras. (See [7, 8, 61, 73, 92, 93] for related works

in the noncommutative setting.)

1.4.2. The isomorphism problem for complete Pick algebras. The above problem in the commutative

homogeneous radical case can be generalized significantly. LetH2
d be the Drury-Arveson space [11, 100]

and Md its multiplier algebra. Let V ⊆ Bd be an analytic variety determined by multipliers, and

considerMV =Md

∣∣
V
(every complete Pick algebra arises this way [1]). In [29, 34, 35, 46, 47, 64, 72, 97]

the isomorphism problem for the algebrasMV was investigated. It was shown that for every isometric
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isomorphism ϕ :MV →MW there is a conformal automorphism F ∈ Aut(Bd) such that F (W ) = V ,

implementing ϕ as a composition operator ϕ(f) = f ◦ F . Conversely, every F ∈ Aut(Bd) gives rise to

an isometric isomorphism. The algberaic isomorphism problem is more subtle: for every isomorphism

ϕ : MV → MW there exists a multiplier biholmorphism F : W → V which is bi-Lipschitz w.r.t. to

the pseudohyperbolic metric, s.t. ϕ(f) = f ◦F . If V,W are homogeneous then F can be chosen linear.

Conversely, under some assumptions, a biholmorphism F : W → V implements via composition an

isomorphismMV →MW . For example, if V,W are homogeneous, then the existence of a linear map

sending W onto V bijectively implies the existence of an isomorphism [34, 46].

1.4.3. Algebras of bounded nc analytic functions on subvarieties of the nc unit ball. In [98, 99] we stud-

ied the extension of the above problem to the fully noncommutative case. In [98] we proved, roughly,

that for two nc varities V,W ⊆ Bd, the algebras H∞(V) and H∞(W) are completely isometrically

isomorphic if and only if there is a conformal automorphism F ∈ Aut(Bd) = Aut(Bd) from W onto V

implementing the isomorphism as a composition operator (this also uses [103]). An interesting ingre-

dient was a nc maximal modulus principle. In [99] we showed that H∞(V) and H∞(W) are weak-∗
isomorphic, if and only if there is a nc analytic map F : W̃ → Ṽ between the similarity envelopes of

the varieties, that is bi-Lipschitz w.r.t. to the nc pseudohyperbolic metric. In the case of homogeneous

varieties, the map can be chosen to be linear, and the weak-∗ assumption can be dropped. A key

ingredient there was a nc version of Cartan’s uniqueness theorem for similarity envelopes.

2. Research objectives and expected significance

2.1. Objectives. My goal is to study matrix convex sets and nc varieties through a series of concrete

problems, and to investigate, via nc function theory and dilation theory, the connection between operator

structures, on the one hand, and the geometry of nc convex sets and varieties, on the other. Specifically:

(1) To construct normal dilations with prescribed spectra. In particular: to compute the dila-

tion constant of a tuple of contractions to a tuple of commuting normals; to prove that a

circumscribing simplex is always a minimal dilation hull.

(2) To develop and use dilation theory in fully noncommutative situations. To calculate sharp

dilation constants c(A,B) between interesting tuples A,B and link this to continuous fields.

(3) To connect the theory of nc convexity to random matrices and free probability theory. To

discover “central limit theorems" for random matrix ranges. To obtain probablistic versions of

von Neumann type inequalities and explore distributions of dilation constants.

(4) To connect geometric properties of the matrix range W(A) to operator-theoretic and operator

space-theoretic properties of a d-tuple A ∈ B(H)d. To detect rigidity or hyperrigidity of the

operator system generated by A in terms of the nc geometry of the matrix range W(A). To

solve Arveson’s essential normality conjecture via hyperrigidity with these tools.

(5) To identify algebras of bounded nc analytic functions on general nc domains and varieties as

operator algebras and study their structure and representation theory; to classify the algebras

up to isomorphism by the geometric properties of the nc varieties/domains on which they live.

(6) To develop nc function theory in general nc domains, with emphasis on classification of do-

mains/varieties, determining automorphism groups, and extension/approximation problems.
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2.2. Significance. Studying the algebraic structure of the algebras of bounded free analytic functions

will shed light on new and previously investigated isomorphism problems for universal operator alge-

bras, and will stimulate developments in nc function theory. We believe that studying the structure

of operator systems using geometry of matrix ranges may have the broadest impact beyond multivari-

able operator theory, touching upon semidefinite programming, quantum information theory, as well

as operator algebras. Setting up a connection between nc convexity and random matrix theory/free

probability may open up enitrely new avenues of research.

3. Detailed description of the proposed research

3.1. Normal dilations and minimal dilation hulls. We start with the following problem: what is

the smallest constant c, such that for every d-tuple of contractions A, there exists a normal tuple N

of contractions such that A ≺ cN? If A is selfadjoint, then c =
√
d works [84] (this found a surprising

application in joint measurability of quantum effects [22]). If we let Cd denote the optimal constant,

then it is known that
√
d ≤ Cd ≤

√
2d [82]. For d = 2 we have C2 ≥ 1.54 [44]. The value of Cd

determines the best possible scale c such that the following von Neumann type inequality holds:

(1) ‖p(A)‖ ≤ sup{‖p(z)‖ : z ∈ cDd}

for every tuple of contractions A and every matrix valued polynomial of degree ≤ 1. The precise value

of Cd is a fundamental property of operator systems in general, and of the operator system spanned

by the generators of the full C*-algebra of the free group in particular.

Still on the subject of dilations, let us define for every compact and convex K ⊆ Cd,

E(K) = {L ⊇ K compact and convex :Wmax(K) ⊆ Wmin(L)}.

A minimal element of E(K) is called a minimal dilation hull of K. Also, let md(K) := {L ∈ E(K) :

L is minimal}. How is a minimal dilation hull of K related to K? It turns out that elements in

md(K) need not resemble K in any way; there is no ball in md(B2,d), while d ·B1,d ∈ md(B2,d). Also,

there is a simplex in md(B2,d), so the shape of a minimal dilation hull is not unique [84]. I will work

towards understanding dilation hulls, and, in particular, I plan to resolve the conjecture that for every

K, every circumbscribing simplex of K is a minimal dilation hull (partial results in this direction

were obtained in [82, 84]). This exciting connection between convex geometry and operator theory

has several suggestive generalizations, on both sides of the containment Wmax(K) ⊆ Wmin(L). For

example, the concept of minimal dilation hull can be extended to finding, given a tuple A ∈ B(H)d,

minimal compact convex sets L such that W(A) ⊆ Wmin(L); the geometry of L and its relation to

W1(A) carry information about the operator system generated by A. A problem with a similar flavour

is: given a matrix convex set S, one can study the maximal and minimal matrix convex sets V,U such

that Vn = Sn = Un for some n. Similar problems have been considered for a while [52, 58, 87] and

their solutions have applications to entanglement in quantum information theory.

3.2. Dilations constants. Given two d-tuples A and B, we extend the notataion A ≺ B to mean

that A is a compression of a ∗-isomorphic copy of B; equivalently, there exist a UCP map such that
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Bi 7→ Ai for all i = 1, . . . , d. We let c(A,B) be the minimal constant c such that A ≺ cB. Note that

Cd = max {c(A,Z) : A is a tuple of contractions} = max {c(U,Z) : U is a tuple of unitaries} ,

where Z = (Z1, . . . , Zd) is the d-tuple of coordinate functions in C(Dd). In our quest to find Cd, we

considered the problem of finding the constants cθ = c((uθ, vθ), (u0, v0)), where (uθ, vθ) is the universal

pair of unitaries that satisfy vθuθ = eiθuθvθ, i.e., the generators of the rotations algebras [23]. In [44] we

computed cθ = 4
‖uθ+u∗θ+vθ+v∗θ‖

, giving the lower bound C2 ≥ maxθ cθ ≈ 1.54 >
√

2. It is interesting to

note that the operator hθ = uθ+u∗θ+vθ+v∗θ is a so-called almost Mathieu operator which is the subject

of intensive research in mathematical physics (it is the Schrödinger operator appearing in the renowned

context of Hosftadter’s Butterfly [56]). We also computed constants cθ,θ′ = c((uθ, vθ), (uθ′ , vθ′)), and

found that cθ,θ′ ≤ e
1
4
|θ−θ′|. This has surprising applications: new proofs of the Lipschitz continuity of

the norm θ 7→ ‖hθ‖ [20] and the 1/2-Hölder continuity of the spectrum θ 7→ σ(hθ) [16].

I propose to study dilation constants c(U, V ) for tuples of unitaries generating C*-algebras that

carry a Td-action; we call these generalized noncommutative tori. They include rotation algebras,

higher dimensional noncommutative tori, and also the reduced and full free group C*-algebras. These

are fascinating constants in themselves, providing information about the elusive dilation constants

Cd. I will exploit the hyperrigidity of operator systems generated by unitaries [14] to study c(U, V )

as a kind of metric between the different C*-algebras, study topological properties, and apply it to

understand the relation between continuous fields and dilation theory.

3.3. Probabilistic perspective. To find the value of Cd we need to understand c(U,Z), where Z is

a normal tuple with sepctrum in Dd and U is a unitary tuple. Numerical experimentation that we

carried out with students [101] shows that if U (n) = (U
(n)
1 , U

(n)
2 ) is a “randomly" chosen pair of n× n

unitaries, then c(U (n), Z) tends to
√

2 as n → ∞. We conjecture that for d-tuples of n × n Haar

unitaries, c(U (n), Z)
n→∞−−−→ c(uf , Z), where uf = (uf1, . . . , ufd) is the tuple of unitaries generating

reduced C*-algebra of the free group, in line with [27]. One consequence is that, typically, d-tuples of

contractions will satisfy the von Neumann type inequality (1) with a constant c < Cd.

The above observation opens the door for a completely fresh outlook on von Neumann type in-

equalities and dilation theory; in the classical theory [21] one asks about worst case scenarios, e.g.,

every pair of commuting contractions satisfies Ando’s inequality, but not every triplet of commut-

ing contractions satisfies a von Neumann type inequality. But we can ask what is the probability that

a von Neumann type inequality is satisfied? This kind of question requires a probability distribution

in order to make sense, and in the noncommutative setting there are natural candidates. A natural

way to choose a “random" tuple of n × n unitaries (U
(n)
1 , . . . , U

(n)
d ) is to pick d independent samples

from the Haar measure on the group Un. We can also ask: what does a random matrix range look

like? We carried out some preliminary work, and we think that using strong convergence results of

Haagerup and Thorbjørnsen [45] and Collins and Male [27], we can show that W(U (n))
n→∞−−−→W(uf )

for Haar unitary ensembles, and that W(X(n))
n→∞−−−→ W(s) for Wigner ensembles, where s is a free

semicircular tuple [106] and convergence is in the Hausdorff metric, almost surely. Using [67] we can

describe W(s) and W(uf ). I believe that we will be able to prove that the numerical range satisfies

W1(X(n))
n→∞−−−→ B2,d (almost surely), generalizing the known case d = 2 [26].
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3.4. Matrix ranges, operator structures and applications. Building on [28, 66, 82, 84], in [83]

we studied how matrix ranges determine the strucutre of operator tuples. For compact compression

minimal tuples, the matrix range is a complete unitary invariant (this also holds for normals). We

characterized compression minimal compact tuples: these are precisely the multiplicity free tuples

which are rigid (i.e. have trivial Shilov boundary); this is equivalent to being direct sum minimal and

nonsingular. The results required analysis of different kinds of extreme points, those mentioned above

as well as crucial matrix extreme points, which we introduced.

I will study the extent to which matrix ranges determine the structure of operator systems. Under

what conditions does the matrix range determine a compression minimal tuple up to unitary equiva-

lence? I’ll develop concrete and computational aspects of matrix convexity and use this to find effective

criteria for determining when is a tuple hyperrigid (in the sense that the operator system it generates

is hyperrigid [14]). It is clear that we cannot read off whether a tuple is rigid (in the sense that is

Shilov boundary is trivial) from the matrix range, but as we saw above the rigidity of a tuple interacts

with the matrix range (e.g., in the case of compact tuples it is implied by compression minimaility,

which is formulated in terms of the matrix range), and I will continue to study exactly how.

3.4.1. Application to Arveson’s conjecture. Arveson’s essential normality conjecture [12, 36] can be

described as follows: consider the tuple of coordinate multipliers Mz = (Mz1 , . . . ,Mzd) in Md =

Mult(H2
d), and let I /C[z1, . . . , zd] be a homogeneous variety. The conjecture is that the compression

T of Mz to the space H2
d 	 I is essentially normal, in the sense that TiT ∗j − T ∗j Ti is compact for all

i, j. In [63] we proved that the conjecture holds for a certain ideal I if and only if the corresponding

operator tuple T is hyperrigid. We will study the matrix ranges W(T ) and use our results to shed

light on this conjecture.

3.4.2. Matrix range questions. Which matrix convex sets S are equal to W(A) for A ∈ B(H), with

dimH = n < ∞? Which matrix convex sets S are equal to Wmin(K) for a convex body K ⊆ Cd?
What about Wmax(K)? In particular, what properties of an operator tuple T allow W(T ) to be the

Wmax or Wmin of a convex body? What is the minimal n such that Wmax
n (K) = Wmin

n (K) implies

that K is a simplex, for all K? And what convex bodies K are such that Wmax(K) is equal to W(A)

for A acting on a finite dimensional space? (for Wmin(K) the answer is if and only if K is a polytope

[43, 84]). What is the minimal dimensional space H such that Wmax(B2,d) = W(A) for A ∈ B(H)d?

We conjecture that A = F works, where F is the canonical d-tuple of anticommuting selfadjoint

unitaries acting on a 2d−1 dimensional space (true for d = 2 [54]). This would imply that every

selfadjoint d-tuple A with numerical range in the unit ball has an anticommuting unitary dilation.

3.4.3. Remark on finite dimensions. Although we do not ignore it, we deliberately choose to mostly es-

chew Davidson and Kennedy’s solution of adding infinite dimensional points. The infinite dimensional

points certainly bring an advantage, as Davidson and Kennedy’s clean results show. But when using

nc sets that consist only of finite dimensional matrices, the theorems are more striking and maybe

even more useful. This point of view meshes with a recent trend of highlighting finite dimensional

phenomena [25, 48, 68, 69, 71] (see also [28, 40, 44, 84]).
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3.5. Algebras of bounded nc analytic functions on nc varieties. Let V,W ⊂ Md be bounded

nc domains, and let V ⊆ V and W ⊆ W be nc analytic varieties. The problem that will be the engine

of our research on nc function theory is: when are H∞(V) and H∞(W) algebraically or (completelely)

boundedly/isometrically isomorphic? In this generality, this is likely to be hopeless. We can assume,

at least at a first stage, that V and W are matrix convex. An important subproblem is V = W, that

is, when both varieties are subvarieties of the same domain. The special case where V =W = Bd has

been studied by my collaborators and me [98, 99, 103]. In this case, V is the space of finite dimensional

wot-continuous completely contractive representations of H∞(V), and Ṽ corresponds to the bounded

ones. Our goal is to understand the representation spaces of the algebras we are studying in general.

In the case of subvarieties of the ball, it is also true that H∞(V) is the quotient of H∞(Bd) by the

ideal of nc functions vanishing on V. It is not at all clear under what conditions this will hold true for

general domains V. Another important subproblem is when V = V and W =W, that is, we are asking

when are algebras of functions on domains are isomorphic. This leads to the question of classification

of nc domains. Interesting work has been done on this question [7, 8, 15, 93], but not much.

We will also ask these question with regards to the algebras of continuous nc functions A(V). This

raises interesting function-theoretic issues. The difficulty here is that first we must determine the

nature of A(V) — it is not even clear that A(V) is the closure of polynomials in the supremum norm

(for V = Bd it is true [98]). To approach all these problems we shall try to set things up in the context

of nc RKHSs and multiplier algebras, making our algebras operator algebras in a natural way.

I conjecture that we will find reasonable conditions on a bounded nc domain V that will guarantee

that for (reasonable) subvarieties V,W ⊆ V, the algebras H∞(V) and H∞(W) are (completely)

isometrically isomorphic if and only if there is a nc automorphism of V mapping W onto V. Further I

conjecture thatH∞(V) andH∞(W) will be boundedly isomorphic if and only if there is nc bi-Lipschitz

biholomorphism from W̃ onto Ṽ. Bi-Lipschitz with respect to what metric? In [98, 99, 103] we

introduced a nc pseudohyperbolic metric on the similarity envelope B̃d of the closed ball by δ(X,Y ) =

‖ΦX −ΦY ‖, where ΦX is the evaluation functional defined on A(Bd) by ΦX(f) = f̃(X) (here f̃ is the

unique extension of f to B̃d). Maybe that approach will work more generally. Perhaps we will find

use in other approaches [19, 95]. The classification of nc domains can be carried out independently,

and I plan to attack it as well.

3.5.1. Open problems in the setting of the nc unit ball. There are three open problems left to solve

for the isomorphism problem for the algebras H∞(V) where V is a subvariety of the nc ball Bd.

In [99], it is proved that for homogeneous varieties V,W ⊆ Bd, the algebras H∞(V) and H∞(W)

are boundedly isomorphic if and only if there is a linear map A : Cd → Cd mapping W̃ bijectively

onto Ṽ, that is bi-Lipschitz w.r.t. the nc pseudohyperbolic distance. This begs the question: given a

linear map A : Cd → Cd mapping W̃ bijectively onto Ṽ, must A be bi-Lipschitz with respect to the nc

pseudohyperbolic distance? I conjecture this is true (of course!), but it is very diffucult, and proving it

will contains Hartz’s fantastic result [46] as a special case.

The second open problem in the ball is to remove the weak-∗ continuity assumption from the non-

homogneoeus case. This requires to adapt the Schwarz-Cartan type techniques that we used in the

homogeneous case to the general case, a goal worthy in itself.
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The third open problem is to improve the results in the the matrix unit ball in infinitely many

variables B∞. For example, we basically have the results in the infinitely many variables case, under

a weak-∗ assumption, and we’d like to remove it (at least for homogeneous varieties). We also do

not know whether isometric isomorphism and completely isometric isomorphism are equivalent in the

infinite dimensional, homogeneous case. Analytic functions in infinitely many variables are very tricky

but have some glaring advantages. For example, inspired the results in [72] it will be interesting to

study the properties of the Bohr map (related of Dirichlet series) in the noncommutative setting. Also,

if we wish to find a universal complete Pick nc kernel à la Agler-McCarthy [1], we should probably be

looking at RKHSs of nc analytic functions in infinitely many variables ([72] notwithstanding).

3.6. Developing nc function theory. We already noted above the need to study classification

of nc domains and develop Schwarz-Cartan type uniqueness results for non-homogeneous similarity

envelopes. Here are a couple more problems. Given a nc analytic function f in a nc open set, which

vanishes on a nc variety V, is it true that f can be approximated (in various senses) by the ideal of all

polynomials vanishing on V? This question has an affirmative answer in the commutative homogeneous

case [34], and solving it may shed light on the nonhomogeneous problem in the commutative setting

as well. A closely related problem is whether a nc analytic function on a nc subvariety of some nc

open set can be extended to a nc analytic function on the open set. The answer is “yes” in the case

of an algebraic variety in a basic free open set [3]. The answer is also “yes" for an analytic nc variety

in Bd, by the nc Pick property [18] (see also [98]). This problem can be approached with operator

algebraic methods, in particular nc RKHS methods. Another possbile route of independent interest

is to first develop rudiements nc function theory following the development of the theory of several

complex variables, through notions of nc poloynomial/holomorphic convexity, nc pseudoconvexity, etc.

4. Conditions available for the research

The Technion provides me with all the physical conditions required for carrying out research. Cur-

rently the operator algebras group consists of two faculty members, a visiting professor, a postdoc and

a PhD student. Our group has ties with other groups in Israel; we have local and national meetings. I

request funding for a postdoc and two PhD students (most of my supervisees went on to do very nice

things, so it’s a good investment). I’ll collaborate with all members of the group and coordinate the

work. I’ll have a critical mass for a seminar, studying the literature, and doing research. The students

and postdocs will need computers, literature, and travel funds.

5. Pitfalls and alternative strategies

The abundance of research directions might become a pitfall. It might be difficult to coordinate

the research between the different problems, or perhaps we will obtain scattered results that will not

combine together to a coherent whole. On the other hand, my proposal has many alternative paths

to take if research along one line gets stuck. I believe that in the end the results from both parts will

turn out to be related. I expect that together with postdocs, students, and collaborators, I will make

significant progress on all problems. I am suggesting several lines of research that can be carried out

independently, difficulties in one direction will not stop us from making progress in others.
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Time schedule and work-plan

Objective Beginning End

 
Explanatory Notes:
This is a project in pure mathematics and if I were to write something down here it would be just to fill
something in. Honestly I don't know any pure mathematician who works according to a work plan.



Budget details

Personnel

Name (last, first) Role in
project

% time
devoted

Salaries (in NIS)

1  year 2  year 3  year 4  year

Shalit Orr Moshe PI 25 0 0 0 0

postdoc RA 1 100 144,000 144,000 144,000 144,000

PhD student RA 2 50 40,000 40,000 40,000 40,000

PhD student RA 3 50 40,000 40,000 40,000 40,000

Total Personnel   224,000 224,000 224,000 224,000

Justification for requested Personnel:
My project is a collection of problems from several different frontiers in noncommutative analysis, and it
requires several people working in tandem to advance. It is very hard for a PhD student to work on both the
"real" and the "complex" sides of the project. Each student will work on a project on one of the sides. I will try
to hire an excellent postdoc who has skills to complement my own (several complex variables, free probability
or random matrix theory), who will contribute in strategic junctions. I have a very good record of leading and
coordinating a research group of 2-3 people and training junior researchers.
 

Supplies & Materials

Item Requested sums (in NIS)

1  year 2  year 3  year 4  year

Total Supplies & Materials 0 0 0 0

Justification for requested Supplies & Materials:

 

Services

Item Requested sums (in NIS)

1  year 2  year 3  year 4  year

Total Services 0 0 0 0

Justification for requested Services:

 

Other Expenses

Item Requested sums (in NIS)

1  year 2  year 3  year 4  year

Participation of research assistants in international
conferences

6,000 6,000 6,000 6,000

Total Other Expenses 6,000 6,000 6,000 6,000

Justification for requested Other Expenses:
Research assistants (PhD students, postdocs) need funding to go to conferences and workshops on a yearly
basis. This is important for several reasons: 
1. Professional development - to learn new and cutting edge results. 
2. Networking - meeting senior and junior colleagues from around the world, who may help them find new
opportunities to advance their careers. 
3. Dissemination - the postdoc and graduate students will give lectures on our results and advertise them,
thereby increasing the impact of our research.
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Computers

Item Requested sums (in NIS)

1  year 2  year 3  year 4  year

Personal computer for the researcher 20,000 0 0 0

Personal computer for students/research
assistants

12,000 6,000 0 0

Software 0 0 0 0

Peripherals 0 0 0 0

Cloud computing 0 0 0 0

Total Computers 32,000 6,000 0 0

Justification for requested Computers:
I need to buy a quality laptop and a desktop, essential for my work. The desktop is required to work
comfortably in my office - my current one is old. I will use the laptop for working while traveling. 

The graduate students will also need laptops, and the postdoc will need a desktop (work station).
 

Miscellaneous

Item Requested sums (in NIS)

1  year 2  year 3  year 4  year

Internet Connection (office/lab only) 0 0 0 0

Photocopies and office supplies 1,000 1,000 1,000 1,000

Memberships in scientific associations 350 350 350 350

Publication charges in scientific journals (including
editing and translation)

0 0 0 0

Professional literature 1,500 1,500 1,500 1,500

Total Miscellaneous 2,850 2,850 2,850 2,850

Justification for requested Miscellaneous:
I am asking for a modest budget for basic supplies, membership in associations (IMU and EMU) and books.
 

 

 

 

Budget Summary

 Requested sums (in NIS)

1  year 2  year 3  year 4  year

Personnel 224,000 224,000 224,000 224,000

Supplies & Materials 0 0 0 0

Services 0 0 0 0

Other Expenses 6,000 6,000 6,000 6,000

Computers 32,000 6,000 0 0

Miscellaneous 2,850 2,850 2,850 2,850

Overhead 45,024 40,604 39,584 39,584

Equipment (no overhead on this item) 0

Total budget 309,874 279,454 272,434 272,434

Annual average 283,549    

International Cooperation (including overhead) 0
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Objectives and results 
 
The objectives of my ISF funded project (grant no. 195/16) were the following:  
 

1. To identify algebras of bounded noncommutative (nc) analytic functions on nc domains and 
varieties as operator algebras and study their structure. Conversely, to represent operator 
algebras as algebras of nc functions and classify the algebras up to isomorphism by the 
geometric properties of the nc varieties on which they live.  

2. To study nc reproducing kernel Hilbert spaces.  
3. To investigate approximation and extension problems for nc analytic functions on nc 

varieties. In the same vein, to consider noncommutative versions of the Nullstellensatz.  
4. To use the results in the nc setting to shed light on the classical (commutative) case.  
5. To apply methods of matrix convexity and noncommutative analysis to the interpolation 

problem for unital completely positive (UCP) maps, and to apply the results to study the 
existence and uniqueness of UCP maps with certain properties between operator spaces. 
Lastly, to apply these results to noncommutative Choquet theory in operator algebras.  

 
Objectives 1 – 4 were all treated with considerable success in the two long papers [6] and [7], 
which were joint work with my postdoc Eli Shamovich and my PhD student Guy Salomon.  
 
In [6] we identified the algebras of bounded nc functions on the nc unit ball and on subvarieties. Let 
B denote the nc unit ball (in d dimensions, where d will remain implicit) and let H(B) denote the 
algebra of bounded nc analytic functions on B. We showed canonical identifications between the 
algebra H(B) of bounded nc analytic functions on the nc unit ball, between the non-commutative 
analytic Toeplitz algebra studied by Davidson-Pitts and by Popescu, between (a special case of) 
the noncommutative Hardy algebra of Muhly-Solel. We also showed a canonical equivalence with 
the nc multiplier algebra of the nc Drury-Arveson space – a nc reproducing kernel Hilbert space in 
the sense of Ball-Marx-Vinnikov. We also gave a new proof of the fact that the underlying nc 
reproducing kernel Hilbert space is a complete Pick space.  
 
To describe further results we need a bit of notation. Let V be a nc subvariety of B, and let H(V) be 
the algebra of bounded nc analytic functions on V. We identified H(V) with several operator 
algebras of interest, including the complete quotient H(B)/J of H(B) by the closed ideal J consisting 
of functions that vanish on V, as well as a nc multiplier algebra on a nc reproducing Hilbert space 
of nc functions on V. Further, when V is a homogeneous variety, then we showed that H(V) can be 
identified with the operator algebra associated with a subproduct system.  
 
After finishing with the various identifications and connections (parts of Objectives 1 and 2), we 
moved on. Next, we proved that H(V) is completely isometrically isomorphic to H(W) if and only if 
there is a nc biholomorphism between V and W. For homogeneous varieties, we showed that this 
is equivalent to that V and W are conformally equivalent. This addresses Objective 1 in the case of 
completely isometric isomorphism. In passing we also addressed Objective 3 by developing a nc 



Nullstellensatz applied in the proof, and we really were able to clarify somewhat the commutative 
case, in particular by identifying the multipliers on the commutative Drury-Arveson space as the 
bounded nc analytic functions on the “commutative ball”.  
 
In paper [7] we treated the classification problem in the setting of bounded and completely 
bounded isomorphism. The main theorem can be stated as follows: if V and W are homogeneous 
varieties, then H(V) is boundedly isomorphic to H(W) if and only if the similarity envelopes of V and 
W are biholomorphic via a bi-Lipschitz map. For this we needed to develop many tools in nc 
function theory, and we got dividends for Objectives 1 – 4 and beyond that. Of special interest is 
our novel analysis of the similarity envelopes of varieties, in particular our nc Cartan uniqueness 
theorem and nc Schwarz lemma for similarity envelopes, which are unbounded nc domains.  
 
The results I obtained towards Objective 5 were quite surprising and have opened up some new 
research avenues for me [1,2,3,4,5]. In [1] the interpolation problem for UCP maps was shown to 
be equivalent to a containment problem for matrix ranges, and in tackling it we obtained some 
exciting results on minimal and maximal matrix convex sets lying over a scalar convex set. Most 
interestingly, we established a connection between containment of matrix convex sets and the 
existence of a normal dilation. In [5] we continued the study of minimal and maximal matrix convex 
sets. We found sharp dilation constants for all Lp balls, and in particular we proved that every d-
tuple of self-adjoints contractions has a normal dilation with elements of norm at most square root 
of d. Another major result of [5] is the characterization of the simplex as the unique convex set, for 
which the minimal and maximal matrix convex sets over it coincide.  
 
The above dilation results raised an interesting question: given a d-tuple of contractions A, what is 
the smallest constant C such that A has a normal dilation of norm C? In an attempt to answer this 
question, we studied the dilation constants for q-commuting unitaries [2]. This work found a very 
surprising application to the continuity of the spectrum of the almost Mathieu operator from 
mathematical physics.  
 
In [4] we proved that the matrix range of a fully compressed tuple of compact operators is a unitary 
equivalence invariant, and we studied the connection of this notion to those of minimality and 
singularity. This urged us to understand what a do matrix ranges look like. We conjecture [3] that 
the matrix ranges of large random matrices converge almost surely in the Hausdorff metric to a 
well understood object (e.g., the matrix range of free semi-circulars). All this is progress on the 
problem of understanding operators and the operator systems they generate in terms of the matrix 
range and its various “boundaries”, which is Objective 5.  
 
List of publications 
 

1. K.R. Davidson, A. Dor-On, B. Solel and O.M. Shalit. Dilations, inclusions of matrix convex 
sets, and completely positive maps, International Mathematics Research Notices Vol. 2017 
Issue 13 (2017), 4069-4130.  

2. M. Gerhold and O.M. Shalit. Dilations of q-commuting unitaries, submitted, 17 pages.  
3. M. Gerhold and O.M. Shalit. The matrix range of a d-tuple of random matrices, work in 

progress.  
4. B. Passer and O.M. Shalit. Compressions of compact tuples, Linear Algebra Appl. Vol. 564 

(2019), 264-283.  
5. B. Passer, O.M. Shalit and B. Solel. Minimal and maximal matrix convex sets, J. Funct. 

Anal. Vol 274 (2018), 3197-3253.  
6. G. Salomon, O.M. Shalit and E. Shamovich. Algebras of bounded noncommutative analytic 

functions on subvarieties of the noncommutative unit ball, Trans. Amer. Math. Soc. Vol. 370 
(2018), 8639-8690.  

7. G. Salomon, O.M. Shalit and E. Shamovich. Algebras of noncommutative functions on 
subvarieties of the noncommutative ball: the bounded and completely bounded 
isomorphism problem, to appear in J. Funct. Anal., 45 pages. 


	General Information
	Scientific abstract
	Research program and figures
	Time schedule and work-plan
	Budget details
	CV of Orr Moshe Shalit
	List Of Publications Orr Moshe Shalit
	Summary of Most Recent ISF Grant

