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This document describes my research, emphasizing the accomplishments achieved since 2017.

1. Dilation theory, matrix convexity and operator systems

1.1. The connection between matrix ranges and the structure of operator systems.
Since Arveson’s seminal papers [7, 8], which initiated the theory of operator spaces, operator
systems and the systematic study of nonselfadjoint operator algebras, completely positive (CP)
maps have played an important role in the theory of operator algebras and in operator theory.
Several years ago I was led to consider the connection between CP maps and matrix convexity.
The interplay of CP maps, dilation theory, matrix convexity and operator algebras has become the
most important theme of my research in the last few years (see also my survey [71]).

For d-tuple A, we defined in [24] its matrix range to be the free set

W(A) = ∪nWn(A) = ∪n{ψ(A) : ψ : C∗(A)→Mn is UCP}.

This notion is an organic extension of Arveson’s notion of matrix range of a single element [8], and
following Arveson we obtained the following basic theorem.

Theorem 1 (Davidson, Dor-On, Shalit and Solel [24]). There exists a UCP map sending Ai to Bi
for all i = 1, . . . , d if and only if W(B) ⊆ W(A). There exists a unital completely isometric map
sending Ai to Bi for all i = 1, . . . , d if and only if W(B) =W(A).

From Theorem 1 we recovered earlier interpolation results as special cases; Helton, Klep and
McCullough’s result that the operator space structure is encoded in the free spectrahedron [43], as
well as the result of Li and Poon that a normal tuple B is the image under a UCP map of a normal
tuple A if and only if the joint spectrum of B is contained in the convex hull of the joint spectrum
of A [54]. In both cases, we extended the results from matrices to operators on infinite dimensions.

By Theorem 1 the matrix range determines the operator system span{1, A1, A
∗
1, . . . , Ad, A

∗
d} of

A. To what extent doesW(A) determine the structure of A? Partial answers were obtained in [24].

Theorem 2 (Davidson, Dor-On, Shalit and Solel [24]). Let A and B be d-tuples of operators such
that C∗env(A) = C∗(A), C∗env(B) = C∗(B), and C∗(A) and C∗(B) contain no nonzero compact
operator. Then W(B) =W(A) if and only if A and B are approximately unitarily equivalent.

The opposite extreme of tuples of compact operators was also studied in [24], and a complete
result for compacts was obtained later by my postdoc Ben Passer and me [61].

Theorem 3 (Passer and Shalit [61]). Let A and B be two fully compressed d-tuples of compact
operators. Then W(A) =W(B) if and only if A is unitarily equivalent to B.

Fully compressed means that the tuple cannot be compressed to a tuple with the same matrix
range. This condition can be understood in terms of the noncommutative Shilov boundary [7].

Theorem 4 (Passer and Shalit [61]). For a compact tuple A the following are equivalent.

(1) A is fully compressed.
(2) A is multiplicity-free, and the Shilov ideal of SA in C∗(SA) is trivial.
(3) A is minimal and nonsingular.
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The proofs involved understanding the relationship between Arveson’s boundary representations
and various sorts of extreme points in the matrix range of a tuple. We have some results about the
latter topic as well. We expected to extend Theorem 3 to GCR tuples, but Davidson and Passer
later built on our ideas and proved that the theorem actually extends to general tuples [26].

1.2. Random matrix ranges. Matrix ranges being important, one is led to ask a variety of
questions about them. Together with Malte Gerhold, my postdoc, we asked what does a “typical”
random matrix range look like? In [35] we pioneered the study of random matrix ranges. We studied
the relationship between various modes of convergence for tuples of operators and continuity of
matrix ranges with respect to the Hausdorff metric. We proved an effective version of the Effros-
Winkler Hahn-Banach type separation theorem for matrix convex sets, and applied it to show that
the matrix range of a tuple generating a continuous field of C*-algebras is levelwise continuous in
the Hausdorff metric. Using known results on strong convergence of matrix ensembles we identified
the sets to which the matrix ranges of independent Wigner or Haar ensembles converge.

Theorem 5 (Gerhold and Shalit [35]). Let XN = (XN
1 , . . . , X

N
d ) be a Wigner ensemble and assume

that E(|(XN
k )ij |4) < ∞ for all i, j. Let s = (s1, . . . , sd) be the semicircular d-tuple. Then W(XN )

converges levelwise in the Hausdorff metric to W(s) almost surely, that is, for all n,

lim
N→∞

dH(Wn(XN ),Wn(s)) = 0 , a.s.

Theorem 6 (Gerhold and Shalit [35]). Let UN = (UN1 , . . . , U
N
d ) be an ensemble of d independent

N ×N unitaries distributed according to the Haar measure in UN and let u = (u1, . . . , ud) be free
Haar unitaries. Then W(UN ) converges levelwise in the Hausdorff metric to W(u) almost surely,

lim
N→∞

dH

(
Wn(UN ),Wn(u)

)
= 0 , a.s.

For the case n = 1 and d = 2, Theorem 5 describes the first level of the matrix range of two
selfadjoint matrices and we obtain that, for matrices drawn from, say, the Ginibre ensemble, the
numerical range converges to a disc (as N →∞), recovering a result of Collins et al. [23].

1.3. Minimal and maximal matrix convex sets and dilations. In the ground breaking paper
[44] Helton, McCullough, Klep and Schweighofer reformulate Ben-Tal and Nemirovski’s relaxation
to the NP hard matrix cube problem of determining whether a spectrahedron contains the unit
cube [17], and they find the optimal constant for this relaxation. A key in their analysis is the
simultaneous dilation of all self adjoint contractions on a finite dimensional space to a commuting
family of selfadjoints on a larger space, with spectrum confined to some cube. These results,
combined with Theorem 1 and its consequences, led us to investigate inclusion problems for matrix
convex sets with an emphasis on the dilation theoretic perspective.

If A = (A1, . . . , Ad) ∈ B(H)d and B = (B1, . . . , Bd) ∈ B(K)d where H ⊂ K, then we say that
B is a dilation of A, and that A is a compression of B, if Ai = PHBi

∣∣
H

for i = 1, . . . , d, where
PH denotes the orthogonal projection of K onto H. If B is a dilation of A, we write A ≺ B. The
groundbreaking dilation result of [44] can be paraphrased as follows: There exists a constant ϑ(n)
such that for any Hilbert space H of finite dimension n, and every d-tuple A ∈ B(H)d of selfadjoint
contractions, there exists a Hilbert space K ⊃ H and a d-tuple N ∈ B(K)d of commuting selfadjoint
contractions such that

(1) A ≺ ϑ(n)B.

Significantly, [44] contains sharp information about the optimal constant ϑ(n) and it is shown
that ϑ(n) ∼

√
n. This is strikingly different from classical dilation theorems in operator theory,

where one dilates commuting tuples to better understood commuting operators. Here, one dilates
noncommuting selfadjoint operators to commuting ones, at the price of a scale factor.
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A matrix convex set is a free set S = ∪n≥1Sn, where each Sn is a set of d-tuples of n×n matrices,
that is invariant under matrix convex combinations. Inspired by [44] we ask: if S, T are two matrix
convex sets and S1 ⊆ T1, what can we say about the inclusion of S in T ? To answer this question we
studied the minimal and maximal matrix convex sets Wmin(K) and Wmax(K) over a set K ⊆ Rd.

One of the most useful contributions we made in [24] is the following observation:

(2) Wmin(K) = {X : ∃N normal s.t. σ(N) ⊆ K and N is a dilation of X},

where σ(N) denotes the joint spectrum of the normal (commuting) tuple N .
In [62], written with my postdoc Ben Passer and with Baruch Solel, we introduced the dilation

constant θ(K) for a compact convex set K, which is defined to be the best constant θ(K) such that

Wmax(K) ⊆ θ(K)Wmin(K).

I will now present two of our main results.

Theorem 7 (Passer, Shalit and Solel [62]). θ(K) = 1 if and only if K is a simplex.

By Theorem 7 the only convex sets K ⊂ Rd over which there is only one matrix convex set,
are simplices. This improves a result of Fritz, Netzer and Thom who proved this for K a polytope
[31]. We showed that it suffices to check Wmax

n (K) = Wmin
n (K) only for n = 2d−1, or even n = 2

for “simplex pointed” sets. We asked whether equality Wmax
n (K) = Wmin

n (K) at n = 2 already
implies K is a simplex. Huber and Netzer gave a positive answer in the case that K is a polytope,
remarking that “the difference [between the minimal and maximal matrix convex set over K] can
always be seen at the first level of non-commutativity, i.e. for matrices of size 2” [46]. The problem
was resolved in full by Auburn et al., who showed how the positive solution of our problem follows
form their resolution of a conjecture of Barker, that the minimal and maximal tensor products of
two finite-dimensional proper cones coincide if and only if one of the two cones is “classical” [12].

Theorem 8 (Passer, Shalit and Solel [62]). Let Bp,d be the unit ball in Rd with the `p norm. Then

θ(Bp,d) = d1−|1/2−1/p|.

For p 6= 2 the sharp constant θ(Bp,d) = d1−|1/2−1/p| was new (d = 2 was known, e.g., [24, 31]).
The cases p = 1,∞ are of special interest, and were cited for estimates regarding joint measurability
of quantum effects in quantum information theory [20, 21]. The case p =∞ means that

(3) Wmax([−1, 1]d) ⊆
√
dWmin([−1, 1]d).

and that
√
d is the optimal constant; by our observation (2) this can be interpreted as follows.

Theorem 9 (Passer, Shalit and Solel [62]). For every d-tuple A of selfadjoint contractions, there
exists a commuting d-tuple of selfadjoint contractions B, such that

A ≺
√
dB.

Note that in Theorem 9 the constant depends on d but not on the dimension of H, whereas in
the inequality (1) the constant depended on dimH but not on d. The paper [62] has several other
results of comparable sharpness, for example we find the constants for unit balls of `p spaces over
the complex numbers, and study minimal dilation hulls. Our work inspired additional interesting
research not mentioned above, for example the interesting [60].

1.4. Dilation constants and applications of dilation techniques to noncommutative set-
tings. Theorem 9 begs the natural question: what is the smallest constant c such that for ev-
ery d-tuple of contractions A, there exists a commuting normal tuple N of contractions such that
A ≺ cN? Let Cd be the optimal constant. By Theorem 9, if A is selfadjoint then c =

√
d works,
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and sharpness of the constant gives Cd ≥
√
d. Passer obtained Cd ≤

√
2d [59]. The constant Cd is

the optimal scale c such that the following von Neumann type inequality holds

(4) ‖p(A)‖ ≤ sup{‖p(z)‖ : z ∈ cDd}

for every tuple of contractions A and every matrix valued polynomial of degree ≤ 1. One can
consider Cd to be a fundamental “constant of nature” pertaining to the structure of operator
systems, and thus it is worth pursuing.

Given two d-tuples A and B, we extend the notation A ≺ B to mean that A is a compression of a
∗-isomorphic copy of B; equivalently, there exist a UCP map such that Bi 7→ Ai for all i = 1, . . . , d.
We let c(A,B) be the minimal constant c such that A ≺ cB. Note that

Cd = max {c(A,Z) : A is a tuple of contractions} = max {c(U,Z) : U is a tuple of unitaries}

where Z = (Z1, . . . , Zd) is the d-tuple of coordinate functions in C(Dd). This suggests that to obtain
lower bounds for Cd we should attempt to calculate C(U,Z) for particular tuples of unitaries U . This
line of reasoning led to my paper [34], which was written jointly with my postdoc Malte Gerhold.
In our quest to find Cd, we considered the problem of finding the constants cθ = c((uθ, vθ), (u0, v0)),
where (uθ, vθ) is the universal pair of unitaries that satisfy vθuθ = eiθuθvθ, i.e., the generators of
the rotation algebras. The pair (u0, v0) is the universal pair of commuting unitaries, so is the same
as Z = (Z1, Z2) from above. In [34] we computed the sharp constant cθ.

Theorem 10 (Gerhold and Shalit [34]).

(5) cθ =
4

‖uθ + u∗θ + vθ + v∗θ‖
.

It is interesting to note that the operator hθ = uθ+u∗θ+vθ+v∗θ which appears in (6) is a so-called
almost Mathieu operator which is the subject of intensive research in mathematical physics and is
the Schrödinger operator appearing in the context of Hosftadter’s Butterfly [45]. Determination of
the precise value of the norm ‖hθ‖ for all θ is difficult, but using a mix of numerical and analytical
considerations we obtained the lower bound C2 ≥ maxθ cθ ≈ 1.54 >

√
2, the best known to date.

The natural symmetry that the family of rotation algebra enjoys led us to dilate θ-commuting
unitaries to θ′-commuting unitaries, and we computed constants cθ,θ′ = c((uθ, vθ), (uθ′ , vθ′)). We
found the precise value cθ,θ′ = cθ−θ′ . Using different methods, we also found in [34] the bound

(6) cθ,θ′ ≤ e
1
4
|θ−θ′|.

This has surprising applications: new proofs of the Lipschitz continuity of the norm θ 7→ ‖hθ‖ [16]
and the 1/2-Hölder continuity of the spectrum θ 7→ σ(hθ) [13].

The exciting results and applications in [34] were quickly subsumed by the paper [33], written
with Malte Gerhold, Satish Pandey (my postdoc), and Baruch Solel. We studied d-tuples of uni-
taries u = (u1, . . . , ud) using dilation theory and matrix ranges. Given two such d-tuples u and v,
we seek the minimal dilation constant c = c(u, v) such that u ≺ cv. We define the dilation distance

(7) dD(u, v) = log max{c(u, v), c(v, u)}

on the set U(d) of equivalence classes of ∗-isomorphic d-tuples of unitaries. Here, we say that u
is equivalent to u′, and we write u ∼ u′, if u′ is some ∗-isomorphic image of u. We compared the
dilation distance to what we refer to as the Haagerup-Rørdam distance dHR determined by

(8) dHR(u, v) = inf
{
‖u′ − v′‖ : u′, v′ ∈ B(H)d, u′ ∼ u and v′ ∼ v

}
.

The following inequality connects dilation theory and representations in a precise analytic manner.
4



Theorem 11 (Gerhold, Pandey, Shalit and Solel [33]). There is a constant K ≤ 56 such that for
all u, v ∈ U(d)

(9) dHR(u, v) ≤ K dD(u, v)1/2.

We also define the matrix range distance to be the Hausdorff distance between matrix ranges

dmr(u, v) := sup
n

dH

(
Wn(u),Wn(v)

)
.

We show dmr ≤ dHR and dmr ≤ 2 dD. As unitary tuples are hyperrigid [11], Theorem 1 implies
that dmr is a metric, thus so are the other two distances. The metrics are equivalent on the set
U0(d) of unitary d-tuples whose matrix range contains some neighborhood of the origin.

For particular classes of unitary tuples we found explicit bounds for the dilation constant. For
example, if for a real antisymmetric d × d matrix Θ = (θk,`) we let uΘ be the universal unitary

tuple (u1, . . . , ud) satisfying u`uk = eiθk,`uku`. We found that

c(uΘ, uΘ′) ≤ e
1
4
‖Θ−Θ′‖,

generalizing (6). However, we get much more, because by Theorem 11, this shows that the map
Θ 7→ uΘ is 1/2-Hölder continuous into the space U(d) of equivalence classes of unitary d-tuples.
Inspired by Haagerup and Rørdam, we proved that for every α-Hölder continuous path in U(d) with
respect to dHR can be lifted to a path that is α-Hölder continuous with respect to the operator
norm from the interval into the group of unitaries on some Hilbert space.

Putting everything together, we recovered by our dilation theoretical techniques the result of
Haagerup-Rørdam [38] (in the d = 2 case) and Gao [32] (in the d ≥ 2 case) that the noncommutative
tori form a continuous field of C*-algebras in the very strong sense, that there exists a map Θ 7→
U(Θ) ∈ B(H)d such that U(Θ) ∼ uΘ and

‖U(Θ)− U(Θ′)‖ ≤ K‖Θ−Θ′‖1/2.
In the case d = 3 we used a mix of numerical and analytical considerations to get the new lower
bound C3 ≥ 1.858, improving on the previously known lower bound C3 ≥

√
3.

In [33] we also considered the universal d-tuple of noncommuting unitaries u, the d-tuple of free
Haar unitaries uf , and the universal d-tuple of commuting unitaries u0.

Theorem 12 (Gerhold, Pandey, Shalit and Solel [33]).

c(u, uf ) = c(u0, uf ) =
d√

2d− 1

and

2

√
1− 1

d
≤ c(uf , u0) ≤ 2

√
1− 1

2d
.

Remarkably, we have the bound c(uf , u0) ≤ 2 independently of d. Combining Theorem 12 with
the observations that c(u, u0) ≤ c(u, uf )c(uf , u0) and that Cd = c(u, u0), we recover Passer’s upper

bound Cd ≤
√

2d [59] with a different proof, leaving open whether this upper bound is sharp.

1.5. Bounded perturbation of the Heisenberg commutation relation. In the previous sub-
section we described how our dilation methods recovered Haagerup and Rørdam’s 1/2-Hölder norm-
continuous path θ 7→ (Uθ, Vθ), where Uθ, Vθ are all unitaries on the same Hilbert space such that
VθUθ = eiθUθVθ. In the original paper [38] this was proved via a result of independent interest on
bounded perturbations of unbounded operators. Our proof avoids unbounded operators, and this
gave us some satisfaction that the dilation method that we discovered is quite powerful. However,
we got curious whether we could use dilations not only to bypass the result on unbounded operators,
but to recover and generalize it as well. This is how the paper [36] was born.
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A pair of selfadjoint (unbounded) operators P andQ is said to satisfy the Heisenberg commutation
relation if the corresponding unitary groups u(t) = eitP and v(t) = eitQ satisfy

u(s)v(t) = eistv(t)u(s),

a condition which is customarily interpreted as

[P,Q] = −iI.
It is well known that that there exists a unique representation of the Heisenberg commutation rela-
tion that is irreducible, namely: the representation on L2(R) in which P = −i d

dx is the momentum
operator and Q = Mx (where (Mxf)(x) = xf(x)) is the position operator, the canonical pair of
operators from basic quantum mechanics.

A natural question raised by von Neumann [76] was this: can one approximate somehow P and Q
by a pair of commuting selfadjoint operators? It is not entirely clear what precisely he had in mind,
but it is by now folklore that one cannot approximate the canonical P and Q in norm with a pair of
strongly commuting P0 and Q0 (strongly commuting means, essentially, that the spectral measures
of P0 and Q0 commute). There is a natural index obstruction, and this obstruction remains for
finite multiplicity versions of P and Q. However, Haagerup and Rørdam solved the problem for
the infinite ampliations of P and Q. A higher dimensional generalization of this was obtained by
Gao [32]. We recovered Gao’s result, improving the bounds.

Theorem 13 (Haagerup and Rørdam [38], Gao [32], Gerhold and Shalit [36]). Let d = 2n and
let Θ be a real nonsingular antisymmetric d × d matrix. Let P1, . . . , Pd be the generators of one-
parameter unitary groups u1, . . . , ud that commute according to Θ. For any real antisymmetric d×d
matrix Θ′, the infinite ampliation P∞ := P ⊗ 1`2(N) of P is a bounded perturbation of a d-tuple Q

of selfadjoint operators that generate d unitary groups that commute according to Θ′ such that

‖P∞k −Qk‖ ≤ 5√
2
‖Θ−Θ′‖1/2

for all k = 1, . . . , d.

Letting d = 2 and θ12 = −θ21 = 1 and Θ′ = 0 we recover Haagerup and Rørdam’s result with
the somewhat better bound 5√

2
≈ 3.54 compared to their best estimate

√
45 ≈ 6.71.

To prove the theorem, we first generalize the dilation distance (7) and the HR distance (8) from
tuples of unitaries to tuples of one-parameter unitary groups. We prove the appropriate analogue of
Theorem 11 for unitary groups, showing that the dilation distance dominates the distance between
representations of the groups. We then observe that two unitary groups a finite distance from each
other have generators that are a bounded perturbation one of the other. Then, we construct a
concrete dilation of unitary groups commuting according to Θ and Θ′ by making use of the Weyl
representation. Putting everything together gives Theorem 13.

2. Multivariable operator theory and algebras of (noncommutative) functions

2.1. Background on the isomorphism problem for complete Pick algebras. The Drury-
Arveson space H2

d is the reproducing kernel Hilbert space on the unit ball Bd ⊂ Cd determined by

the kernel k(z, w) = 1
1−〈z,w〉 (see my survey [70]). Let Md be the multiplier algebra of H2

d ,

Md = {f : Bd → C : fh ∈ H2
d for all h ∈ H2

d} ⊆ H∞(Bd).
By variety we shall refer to a zero set of multipliers. For a variety V ⊆ Bd, we denote

MV = {f
∣∣
V

: f ∈Md}.
Every irreducible complete Pick multiplier algebra is of the form MV for some V [1]. The iso-
morphism problem is the problem whether the “geometry” of V is a complete invariant for the
“structure” of MV (see my survey [64]).
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Theorem 14 (Davidson, Ramsey and Shalit [29]). Let V,W ⊆ Bd be two varieties. Then MV and
MW are isometrically isomorphic, if and only if there is a biholomorphic automorphism of the ball
that maps V onto W .

With regards to algebraic isomorphism, one implication holds in considerable generality.

Theorem 15 (Davidson, Ramsey and Shalit [29]). Let V,W ⊆ Bd be two varieties that are a union
of a discrete variety and a finite union of irreducible varieties. If MV and MW are algebraically
isomorphic, then V and W are multiplier biholomorphic.

Here multiplier biholomorphic means that the biholomorphism and its inverse are vector valued
multipliers. Michael Hartz, Ken Davidson and I showed that the converse fails in general [25]. In
fact, we observed that multiplier biholomorphism is not an equivalence relation. Seeking a complete
invariant for these algebras, we showed that if MV

∼= MW then V and W are bi-Lipschitz w.r.t.
the pseudohyperbolic metric in the ball. But this too isn’t a complete invariant [25]. However, a
converse to Theorem 15 holds within certain classes of varieties, e.g., two homogeneous varieties
V,W are biholomorphic if and only if MV and MW are isomorphic. We proved this in [28] with
Chris Ramsey and Ken Davidson under some assumptions, which were later removed by Hartz [39].

The isomorphism problem was also resolved for V,W one dimensional and sufficiently nice — by
Alpay, Putinar and Vinnikov for discs [5], by Arcozzi, Rochberg and Sawyer for planar domains [6],
and by Kerr, McCarthy and me for finite Riemann surfaces [53]. All cases assume V,W are images
of proper holomorphic maps with finitely many ramification points that extend injectively to regular
C2 functions on the boundary (early versions required a transversality condition at the boundary,
but in [25] we proved a Hopf type lemma showing that one dimensional varieties as above always
meet the boundary transversally). Specifically, we show that if V is as above, thenMV = H∞(V ),
with comparable norms. It follows that MV is isomorphic to MW if and only if V and W are
biholomorphic. Another striking corollary to the above theorem is a Henkin type extension result:
for V ⊂ Bd as above, there exists a constant C > 0, such that for every f ∈ H∞(V ), there exists a
multiplier F ∈Md ⊂ H∞(Bd) such that F

∣∣
V

= f and ‖F‖∞ ≤ ‖F‖mult ≤ C‖f‖∞ [53].

2.2. A quantitative approach to the isomorphism problem. Consider a finite set X ⊂ Bd,
and construct the quotient module HX := span{kλ : x ∈ X} = H2

d

∣∣
X

together with its multiplier

algebra MX = Mult(HX) = Md

∣∣
X

. We know from the previous subsection that if Y ⊂ Bd, then
MX andMY are isometrically isomorphic if and only if Y is the image of X under an automorphism
of the ball. But what if Y is very close to X under an automorphism? Are the algebras then in
some sense “almost” isometrically isomorphic? More interestingly, if the algebras are “almost”
isometrically isomorphic, does this mean that the sets are close to being an automorphic image one
of the other? In the [57], my undergraduate supervisee Danny Ofek, my postdoc Satish Pandey
and I introduced a quantitative version of the isomorphism problem that treats this problem.

Let ρph be the pseudohyperbolic metric on the unit ball Bd. This metric induces the Hausdorff
metric ρH on subsets of the ball, which in turn gives rise to an automorphism invariant Hausdorff
distance between subsets

ρ̃H(X,Y ) = inf {ρH(X,Φ(Y )) : Φ ∈ Aut(Bd)} .
We introduced a distance function ρRK which is analogous to the Banach-Mazur distance

ρRK(H1,H2) = log
(
inf
{
‖T‖‖T−1‖ : T : H1 → H2 is an RKHS isomorphism

})
.

This distance function quantifies how far two Hilbert function spaces are from being isometrically
isomorphic as reproducing kernel Hilbert spaces. We also introduced a distance function ρM , defined
via a similar formula, that quantifies how far two multiplier algebras are from being completely
isometrically isomorphic. The main results in [57] are that for two finite subsets X and Y of the
unit ball, ρ̃H(X,Y ) is small if and only if ρRK(HX ,HY ) is small, and this happens if and only if
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ρM (MX ,MY ) is small. When one of the distances is zero this is what Theorem 14 says. It is
worth mentioning that Ofek and Sofer found many natural weighted Hardy spaces for which this
type of theorem fails [58], in fact already the qualitative Theorem 14 fails.

2.3. Classification of algebras of bounded noncommutative functions on subvarieties of
the noncommutative unit ball. Noncommutative (nc) function theory has flourished during the
last 15 years [2, 3, 14, 15, 42, 48]. Several years ago I realized that many of the operator algebras
that I and others studied could be realized as algebras of bounded nc function on subvarieties of
the nc unit ball. In particular, the isomorphism problem discussed above can be viewed as as a
special case of a wider problem that takes place in the noncommutative world.

Let Md
n be the set of all d-tuples of n × n such matrices, and put Md = ∪∞n=1M

d
n. A subset

Ω ⊆Md is called a free set. A free set Ω is said to be a nc set if it is closed under direct sums. For
a nc set Ω we denote Ωn = Ω ∩Md

n, and Ω = ∪∞n=1Ωn. The similarity envelope of a nc set Ω is the

nc set Ω̃ consisting of all tuples S−1XS jointly similar to some X ∈ Ω. We say that a nc set Ω is
a nc domain if Ωn is open in Md

n for all n. Our central example of a nc domain is the nc unit ball

Bd = {X ∈Md : ‖
∑

XjX
∗
j ‖ < 1}.

A function f from a nc set Ω ⊆Md to M1 is said to be a nc function if it is graded, respects direct
sums, and respects similarities. Free polynomials are the most important example of nc functions.
A nc function defined on a free open set Ω is said to nc holomorphic if it is locally bounded. It is
a remarkable fact that a nc holomorphic function is holomorphic in a natural analytic sense [48].

For every nc set Ω we let H∞(Ω) be the algebra of bounded nc functions on Ω equipped with
the supremum norm ‖f‖ = supX∈Ω ‖f(X)‖, and we let A(Ω) be the closure of the polynomials in
H∞(Ω) with respect to the supremum norm. A nc variety is the zero set of H∞ functions, that is
a free set of the form V = {X ∈ Ω : ∀f ∈ S . f(X) = 0}, where S ⊆ H∞(Ω).

In [65], Guy Salomon (my PhD student), Eli Shamovich (my postdoc) and I initiated the study of
bounded nc functions on the nc unit ball and its subvarieties. We identified algebras of nc functions
as multiplier algebras of nc reproducing kernel Hilbert spaces [14], proved they have the complete
Pick property, and classified them. The classification program for the algebras H∞(V) is modeled
on and extends the isomorphism problem of Section 2.1. The following result is representative.

Theorem 16 (Salomon, Shalit and Shamovich [65]). Let V ⊆ Bd and W ⊆ Be be nc varieties.
H∞(V) and H∞(W) are completely isometrically isomorphic if and only if there exists a nc holo-
morphic map G : Be → Bd and a nc holomorphic map H : Bd → Be such that G

∣∣
W

= (H
∣∣
V

)−1.

We also showed that a completely isometric isomorphism α : H∞(V)→ H∞(W) is implemented
by some G as α(f) = f ◦G. For homogeneous varieties we showed that G and H can be chosen to be
automorphisms in Aut(Bd) ∼= Aut(Bd). Shamovich later extended this to almost full generality [75].
This is a noncommutative version of Theorem 14. For the free commutative ball CBd consisting
of all commuting strict row contractions, H∞(CBd) =Md, the multiplier algebra of H2

d . If V is a
subvariety of CBd then H∞(V) is a quotient of Md. This quotient can be an algebra of the form
MV which corresponded to “radical” ideals, but it can also be an algebra that encodes multiplicity.

The paper [65] contained also similar results for the algebras A(V) defined to be the closure of
the polynomials in H∞(V) with respect to the supremum norm ‖f‖ = supX∈V ‖f(X)‖, under the
assumption that V is homogeneous. Interestingly, we also show that A(V) is equal to the algebra
of all uniformly continuous nc functions on V.

What about the noncommutative version of Theorem 15, that is, classification of H∞(V) up
to isomorphism? In [66] Salomon, Shamovich and I approached this problem. Motivated by the
commutative case, one might guess that the variety V is an invariant for the algebra H∞(V), with
the difference that the class of morphisms determining the geometry should be nc biholomorphisms
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rather than nc automorphisms. But it turns out that if there is a nc biholomorphism between two
nc subvarieties V,W ⊆ Bd, then there is a nc automorphism F ∈ Aut(Bd) such that F (V) = W.
But that would imply that the algebras are completely isometrically isomorphic. Thus, the nc
variety V cannot be a complete invariant of H∞(V), it is not even an invariant of the algebra!

We show that the similarity envelope Ṽ = ∪nṼn of V, where

Ṽn = {(S−1X1S, . . . , S
−1XdS) : X = (X1, . . . , Xd) ∈ Vn and S ∈ GLn}.

parameterizes the space of finite dimensional weak-∗ representations of H∞(V), by way of

Ṽ 3 X ←→ ΦX : f 7→ f(X).

We view the similarity envelopes as metric spaces by introducing a metric δ on the similarity

envelope of the ball B̃d that we call the nc pseudohyperbolic metric, given by

δ(X,Y ) = ‖ΦX − ΦY ‖.
A representative classification result is the following.

Theorem 17 (Salomon, Shamovich and Shalit [66]). Let V ⊆ Bd and W ⊆ Be be two homogeneous
nc varieties. The following statements are equivalent:

(1) H∞(V) and H∞(W) are weak-∗ continuously isomorphic.
(2) H∞(V) and H∞(W) are boundedly isomorphic.
(3) H∞(V) and H∞(W) are completely boundedly isomorphic.

(4) There exists a bi-Lipschitz nc biholomorphism mapping W̃ onto Ṽ.

(5) There exists a bi-Lipschitz linear map mapping W̃ onto Ṽ.

In addition, any isomorphism that appears in (1)–(3) can be viewed as a pre-composition with a
bi-Lipschitz nc biholomorphism between the similarity envelopes.

In the general case of not-necessarily-homogeneous varieties, we have that (1) is equivalent to
(4) and then (2) is automatic, as well as a version for completely bounded weak-∗ isomorphisms.

Some of the tools that are developed to obtain Theorem 17 are interesting in their own right.
For example, we proved the following nc counterpart of the Schwarz Lemma of the disc.

Theorem 18 (Salomon, Shamovich and Shalit [66]). Let f : D → B̃d be a holomorphic function
mapping 0 to 0, and let ρ denote the joint spectral radius of a d-tuple of matrices. Then

(1) ρ(f(z)) ≤ |z| for every z ∈ D and ρ(f ′(0)) ≤ 1; and
(2) if f ′(0) is an irreducible coisometry, then f(z) is similar to zf ′(0) for very z ∈ D.

We used the above theorem to prove a nc version of Cartan’s uniqueness theorem for similarity
envelopes. Recall that by Cartan’s uniqueness theorem if F : U → U is holomorphic on a bounded
domain in Cd such that F (a) = a and DF (a) = id for some a ∈ U , then F = idU . This cannot

hold for maps on B̃d because every similarity in H∞(Bd) is an automorphism, so by Theorem 17

it induces a map G : B̃d → B̃d that fixes first level. However, we have the following.

Theorem 19 (Salomon, Shamovich and Shalit [66]). Let G : B̃d → B̃d a nc holomorphic map

that fixes the origin and such that its derivative at 0 is the identity. If X ∈ B̃d is irreducible, then
G(X) is similar to X.

Our motivation for proving this theorem is the attempt to understand the automorphisms of

H∞(Bd); indeed, by Theorem 17 these are determined by biholomorphic automorphisms of B̃d.
This also connects to a problem going back to Davidson and Pitts on the automorphisms of the
noncommutative analytic Toeplitz algebras [27]. We showed that theses algebras studies by Davidson
and Pitts are all isomorphic to some H∞(Bd). Translated to our language, Davidson and Pitts
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proved Theorem 16 for the case where V = W = Bd, namely they proved that every G ∈ Aut(Bd)
gives rise to a completely isometric automorphism of H∞(Bd), and that all completely isometric
automorphisms arise this way. They showed that there is a surjection τ : Aut(H∞(Bd))→ Aut(Bd)
with a continuous section κ : Aut(Bd) → Aut(H∞(Bd)), taking Aut(Bd) onto the completely
isometric automorphisms of H∞(Bd).

Davidson and Pitts referred to the kernel of τ as quasi-inner automorphisms, these are precisely
the automorphisms that fix the character space. In our language, these are the automorphisms
whose implementing map G fixes the first level of the nc ball. They asked whether all quasi-inner
automorphisms are inner, i.e. implemented by a conjugation with an invertible element in H∞(Bd).
We give a partial answer in Theorem 19, which says that every quasi-inner is “pointwise inner”. If
the similarity in Theorem 19 is implemented by an invertible element ϕ(X) where ϕ ∈ H∞(Bd) is
independent of X, this would show that all quasi-inner automorphisms are inner.

2.4. von Neumann’s inequality for row contractive matrix tuples and applications to
operator algebras and nc function theory. During our investigation of continuous nc functions
in [65] the question arose, whether there exists a uniformly bounded nc holomorphic function on
the free commutative ball CBd that is levelwise uniformly continuous but not globally uniformly
continuous. This has led me to the collaboration [40], joint with Michael Hartz and Stefan Richter.
It turns out that the question on uniformly continuous nc functions on CBd can be reduced to the
following von Neumann type inequality, which we prove.

Theorem 20 (Hartz, Richter and Shalit [40]). There exists a constant Cn such that for all d ∈ N,
for every commuting row contraction T = (T1, . . . , Td) on a Hilbert space of dimension n and for
every polynomial p ∈ C[z1, . . . , zd], the inequality

(10) ‖p(T )‖ ≤ Cn sup
z∈Bd

|p(z)|

holds.

It is known that there is no constant that would work for all n. Inequality (10) might seem
elementary on first sight1, but its proof required novel ideas, and it has led to the resolution of sev-
eral open questions. Besides the the resolution in the affirmative of the above mentioned problem
on uniformly continuous nc functions, we applied our results to show that (i) Gleason’s problem
cannot be solved contractively in H∞(Bd) for d ≥ 2, (ii) the multiplier algebra Mult(Da(Bd)) of
the weighted Dirichlet space Da(Bd) on the ball is not topologically subhomogeneous when d ≥ 2
and a ∈ (0, d) — an open problem from [4]; and (iii) we determined the bounded finite dimensional
representations of the norm closed subalgebra A(Da(Bd)) of Mult(Da(Bd)) generated by polynomi-
als. In particular, we determined the bounded representations of the ball algebra A(Bd), that is,
the closure of the analytic polynomials in C(Bd) with respect to the supremum norm.

Theorem 21 (Hartz, Richter and Shalit [40]). For all a > 0, the unital bounded n-dimensional
representations of A(Da(Bd)) coincide with those of A(Bd), and these are precisely the maps f 7→
f(T ) where T is a d-tuple jointly similar to a row contraction.

2.5. Classification and representation of operator algebras of subproduct systems. In
this section, by a subproduct system we mean a family X = {Xn}n∈N of Hilbert spaces where
X0 = C and, roughly,

Xm+n ⊆ Xm ⊗Xn

for all m,n ∈ N. Let F(X) =
⊕∞

n=0Xn be the Fock space over X. The tensor algebra AX is the
norm closed algebra generated by the operators Sξ, ξ ∈ Xm, given by the shift operators

Sξ(η) = PXm+n(ξ ⊗ η) , η ∈ Xn

1Go ahead, make my day.

10



where PXm+n denotes the projection of Xm ⊗ Xn onto Xm+n. These algebras are related to the

tensor algebras T +
E of Muhly-Solel [55], and the C*-algebras arising from subproduct systems are

counterparts of the Toeplitz-Pimsner algebras TE and Cuntz-Pimsner algebras OE of Pimsner and
Katsura [63, 49]. In [74, 28, 47] we worked on the problem of classifying the nonselfadjoint algebras
AX for interesting classes of subproduct systems. We also studied related C*-algebras and we
identified the C*-envelope of AX .

The main classification result was, roughly, this: For two subproduct systems X and Y with finite
dimensional fibers, the tensor algebras AX and AY are isometrically isomorphic if and only if X
and Y are isomorphic subproduct systems [28]. In [47] we proved a similar result about bounded
isomorphism. The corresponding question about systems with infinite dimensional fibers was left
open because the proof used inherently finite dimensional complex geometry.

In [65] we showed that if X is a subproduct system with dimX1 = d ∈ N, then there exists a
homogeneous ideal J / C〈z1, . . . , zd〉 and a homogeneous nc variety

(11) V = V (J) := {Z ∈ Bd : p(X) = 0 for all p ∈ J}

such that AX = A(V), in other words, in finitely many variables tensor algebras of subproduct
systems are just algebras of nc functions. Thus we were led to two questions regarding subproduct
systems with infinite-dimensional fibers:

(1) Is it true, that two tensor algebras are isomorphic (in an appropriate sense) if and only if
their subproduct systems are isomorphic (in the corresponding sense)?

(2) Can every tensor algebra be identified with the algebra of uniformly continuous nc functions
on a homogeneous nc variety?

Michael Hartz and I set to resolve these problems. There is a bijective correspondence between
subproduct systems X and homogeneous ideals J in A(Bd). With every homogeneous ideal J

we may also define a variety V (J) as in (11). The closure V (J) corresponds to all bounded finite
dimensional representations of AX , therefore every element in AX can be considered as a uniformly
continuous nc function on V (J). This gives a natural restriction map AX → A(V (J)) and the
question becomes whether this is a complete isomorphism.

Let us say that a closed idea J / A(Bd) satisfies the Nullstellensatz if

J = I(V (J)) := {f ∈ A(Bd) : f(X) = 0 for all X ∈ V (J)}.

Theorem 22 (Hartz and Shalit [41]). Let J be a homogeneous ideal in A(Bd) and let X the
corresponding subproduct system. The following are equivalent:

(1) The ideal J satisfies the Nullstellensatz.
(2) The restriction map AX → A(V (J)) is injective.
(3) The restriction map AX → A(V (J)) is a completely isometric isomorphism.
(4) AX is residually finite dimensional.

It is known that when d <∞ every homogeneous ideal satisfies the Nullstellensatz J = I(V (J))
[65]. However, in [41] we found that for d = ∞ this might fail. It follows that the class of
tensor algebras of subproduct systems is richer than the class of uniformly continuous nc functions
on homogeneous varieties. In particular, one cannot reduce the isomorphism problem for tensor
algebras to function theory. We solved the problem by a different route, finally extending my results
with Davidson and Ramsey [28] and with Kakariadis [47] to the case d =∞.

Theorem 23 (Hartz and Shalit [41]). For subproduct systems X and Y the following are equivalent:

(1) There exists a bounded isomorphism ϕ : AX → AY .
(2) There exists a completely bounded isomorphism ϕ : AX → AY .
(3) There exists a similarity W : X → Y .
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Also, the following are equivalent:

(1) There exists an isometric isomorphism ϕ : AX → AY .
(2) There exists a completely isometric isomorphism ϕ : AX → AY .
(3) There exists an isomorphism W : X → Y .

2.6. My past work on the Arveson-Douglas essential normality conjecture. The Arveson-
Douglas essential normality conjecture has intrigued me for several years, but I did not obtain new
results on this topic in the last six years. Still, it is perhaps worth noting that some of my results
have survived. This more-than-twenty-year-old open problem has attracted the attention of many
researchers, some of them outstanding (see the survey [37]). The problem is, roughly, whether all
graded quotient modules of the Drury-Arveson Hilbert module H2

d are essentially normal. This
conjecture was resolved for several special cases. In the first decade of this century, progress was
made mainly on the case of monomial ideals, principal ideals, and low or high dimensional cases.
In the last decade, most progress has been made using hard harmonic analytical methods, the
conjecture was shown to hold under various smoothness assumptions, and results were extended for
Hilbert modules other than the Drury-Arveson space, as well as for Hilbert modules of holomorphic
function on pseudo-convex domains beyond the unit ball. But progress was limited in the direction
of reducible varieties. In [68] I introduced the stable division property (developed further with Biswas
in [22]), which inspired Kennedy to approach the problem from a decomposability perspective [50]
and this led us afterwards to collaborate and write [51], where, using mostly operator theoretic
methods, we solved the problem for quotient modules corresponding to a variety that is the union
of linear subspaces — this might still be the best result in this particular direction.

In [52] Kennedy and I approached the problem from a completely different, operator algebraic,
approach and we showed that a quotient of H2

d is essentially normal if and only the corresponding
shift is hyperrigid in the sense of Arveson [11]. This paper is unique in the following way: rather
than solving the conjecture for a special case, as most papers on the subject proceed, it establishes
weaker forms (consequences of) the conjecture for all graded quotients; for example we identify the
correct C*-envelope of the algebra generated by the quotient module. As far as I know, there has
not been any general progress on the conjecture since then.

3. Dilation theory of completely positive semigroups

A CP-semigroup is a semigroup ϕ = {ϕt}t≥0 of completely positive maps on a unital C*-algebra
B. When each ϕt is a ∗-endomorphism of B, then ϕ is an E-semigroup. An E-semigroup α on an
algebra A is said to be an E-dilation for ϕ if there is some projection p ∈ A such that B = pAp and

(12) ϕt(b) = pαt(b)p,

for all b ∈ B and t ∈ R+. A pivotal result in this field is Bhat’s theorem, which says, roughly, that
every (one-parameter) CP-semigroup has a unique E-dilation [18, 19, 56].

My main contribution to this field is the extension of Bhat’s Theorem to CP-semigroups ϕ =
{ϕs}s∈S which are parameterized by some semigroup S, rather then by the semigroup R+. The
cases of greatest interest are S = Nk or S = Rk+. My first early results were that every pair
of strongly commuting CP-semigroups has an E-dilation [67, 69]. Then, in order to study CP-
semigroups over general semigroups, together with my PhD supervisor Baruch Solel, we introduced
the notion of a subproduct system, a generalization of Arveson’s product systems [9]. A subproduct
system is a family E = {Es}s∈S of C*-correspondences that satisfy, roughly,

(13) Es+t ⊆ Es ⊗ Et , for all s, t ∈ S.
A product system is a subproduct system where in (13) equality holds instead of inclusion. We
showed that there is a bijective correspondence between CP-semigroups of normal maps on a von
Neumann algebra B, on the one hand, and subproduct systems of W*-correspondences (over B′) and
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subproduct system representations, on the other [74]. This correspondence allows to use subproduct
systems as the main tool for either constructing dilations or for showing that they do not exist.

For CP-semigroups that act on a C*-algebra the machinery developed in [74] does not apply.
For over a decade I worked with Michael Skeide on developing an alternative theory. This project
was completed in 2020, and was accepted for publication last year [73]. This paper is over 200
pages long and very rich with results, examples and counter-examples. Here I’ll only give some
highlights, being necessarily imprecise. The following captures the central theme of the paper.

Theorem 24 (Shalit and Skeide [73]). To every CP-semigroup ϕ = {ϕs}s∈S on a C*-algebra B,
there corresponds a subproduct system of B-correspondences {Es}s∈S , and a unit {ξs ∈ Es}s∈S that
satisfies ξs+t = ξs ⊗ ξt such that ϕ is represented as

(14) ϕs(b) = 〈ξs, bξs〉 , b ∈ B, s ∈ S.
If ϕ is unital, then it has a full and strict unital E-dilation, if and only if the subproduct system
embeds into a product system.

The representation in (14) is just the well-known GNS representation of a CP map, and the
observation that it assembles into a subproduct system is easy. The meat of the theorem is in the
last line. Still, this theorem is not so far from the machinery of Bhat and Skeide [19] powered
by the insight gained in [74], and the real difficulty starts when we wish to apply it effectively to
various situations, and in particular when we wish to treat all dilations, and not only those that
are full and strict as required in the theorem, or if we consider nonunital CP-semigroups. One of
our novel results is the identification of the role that superproduct systems (where the inclusion in
equation (13) is reversed) play in dilation theory.

Theorem 25 (Shalit and Skeide [73]). A CP-semigroup has a good dilation only if its subproduct
system embeds into a superproduct system.

We use this theorem to prove that there are three commuting unital CP maps with no dilation
whatsoever. This improves on previous negative results in this direction [72, 74], that could only
rule out the existence of full and strict dilations.

Theorem 26 (Shalit and Skeide [73]). There exist three commuting unital CP maps for which
there is no dilation whatsoever.

It is interesting to note that although we provide an explicit, concrete and finite dimensional
counter example, the proof involves passing from the GNS subproduct system via Morita equiva-
lence to another subproduct system that we associate with every CP-semigroup. We also have new
results in the positive direction, concerning the case N2 (two commuting maps) and Rk+ (quantized
convolution semigroups).

The most difficult part of the paper is perhaps the one dealing with minimality (Sections 21 and
22). There are several natural notions of minimality for dilations. We study them and compare
them using our machinery. We use our framework to analyze the dilation that we constructed in
the case of two commuting normal UCP maps, and we show that, in general, the natural notions
of minimality differ in the multi-parameter case. Worse: minimal dilations are not unique. In fact,
we show that there are dilations that cannot be minimalized in a certain sense, contrary to what
anyone might guess. We also analyze the one-parameter case and we obtain the following result.

Theorem 27 (Shalit and Skeide [73]). For a normal strong dilation of a one-parameter CP-
semigroup, the following are equivalent:

(1) The dilation is fully minimal.
(2) The dilation is incompressible.
(3) The dilation is strongly incompressible.
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Every dilation can be restricted and compressed to the minimal dilation, which is unique.

This improves in two ways on a result of Arveson, who obtained the equivalence of (1) and (3)
in the unital case [10, Section 8.9]. It is very pleasing that our framework, which was introduced
in order to treat the difficulties that arise in the multi-parameter case, also found applications in
new results for the one-parameter case.
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