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This file acompanies the paper Dilations of Unitary Tuples by Malte Gerhold, Satish Pandey, Orr Shalit and

Baruch Solel. The purpose of these MATLAB computations is to find an estimate for the largest dilation constant

for three q-commuting unitaries. 

Recall that a pair  of unitaries is said to q-commute it . We will write  and alternatively treat

 as the parameter. We will consider "rational" , meaning that . A triple of unitaries  is said

to q-commute if each one of the pairs  ,  and  is q-commuting. We write  for the dilation

constant corresponding to this tuple, i.e., the smallest constant such that , where where z is 3-tuple of

commuting unitaries. 

Below we define functions make2qCommuting(m,n) and make3qCommuting(m,n) for making a pair or a triple

of q-commuting unitaries (where  and ). When q is a root of unity, one can prove that every

irreducible representation of q commuting pairs or qcommuting tuples can be obtained from these pairs or triples

by applying a guage automorphism (i.e., multiplying each unitary by some scalar of modulus one). 

Here is an example: 

format short
U = make3qCommuting(1,3);
U(:,:,1)

ans = 3×3 complex
  -0.5000 + 0.8660i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i  -0.5000 - 0.8660i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   1.0000 - 0.0000i

U(:,:,2)

ans = 3×3 complex
   0.0000 + 0.0000i  -0.5000 + 0.8660i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i  -0.5000 - 0.8660i
   1.0000 - 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i

U(:,:,3)

ans = 3×3
     0     1     0
     0     0     1
     1     0     0
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By Proposition 6.6 in the paper, we have that: 

As all the representations of  are given by , where U = make3qCommuting(m,n) (recall  )

and  , we can calculate an approximation (from below) of the the norm of the denominator by the  function

norm3tuple(U,N) (defined below). 

We have where  and

 and . The function norm3tuple(U,N) approximates this

supremum for the input  by computing from t selected from a uniformly spaced lattice in the

cube  where the points lie ot the vertices of cubes of size . (The default value of N is , to allow a

quick and dirty estimation of the norm). 

Here is a little experiment to see how the calculated norm depends on the parameter N (the fineness of the

grid). 

nrm = zeros(80,1); 
for i=1:80 
    nrm(i) = norm3tuple(U,i); 
end
plot(nrm)
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It is interesting to note, first, that the norm ideed changes with different changes of gauge, and, second, that the

estimate seems to stabilize, and, third, that the relative variation in the value looks like 2%, so using low value of

N can give us a rough estimate with which to start. 

The following loop quickly scans values of , searching for a value that minimizes the norm

 , so that it will maximizes the value of . 

N = 20; 
c_vals = zeros(N+1,1); 
for m=0:N
    if m > N/2; 
        c_vals(m+1) = c_vals(N+1-m);% A_\theta is isomorphic to A_{-\theta}
    end
    % Find reduced fraction for m/N
    g = gcd(m,N);
    mr = round(m/g);
    nr = round(N/g); 
    % create the q-commuting 3-tuple and compute norm of sum_i u_i + u_i^*
    U = make3qCommuting(mr,nr);
    nrm = norm3tuple(U); 
    c_vals(m+1) = 6/nrm;
end
thetas = 2*pi*[0:1/N:1];
plot(thetas,c_vals,'ro')
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[max_c, ind] = max(c_vals)

max_c = 1.8616
ind = 10

best_theta = thetas(ind)

best_theta = 2.8274

biggest_norm = 6/max_c

biggest_norm = 3.2230

Having found that  is a reasonable guess for the value that gives the largest dilation cosntant, we will

try some other fractions with low denominator that are slightly less than . 

N = 13;
c_vals = zeros(N,1); 
thetas = zeros(N,1);
for n=1:N
    m = ceil(n/2)-1;
    % Find reduced fraction for m/N
    g = gcd(m,n);
    mr = round(m/g);
    nr = round(n/g); 
    thetas(n) = 2*pi*mr/nr; 
    % create the q-commuting 3-tuple and compute norm of sum_i u_i + u_i^*
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    U = make3qCommuting(mr,nr);
    X = zeros(size(U(:,:,1)));
    nrm = norm3tuple(U); 
    c_vals(n) = 6/nrm;
end
plot(thetas,c_vals,'ro')

[max_c, ind] = max(c_vals)

max_c = 1.8835
ind = 7

best_fraction = (ceil(ind/2)-1)/ind

best_fraction = 0.4286

best_theta = thetas(ind)

best_theta = 2.6928

biggest_norm = 6/max_c

biggest_norm = 3.1855

So now we know that it is a good idea to try  . So we compute its norm more exactly, by using a finer

grid, with N=1000. This will make the norm estimate for  more precise - larger - and

hence make our estimate of the value of  for this angle  more preicse - smaller. This takes significantly
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longer, since we are going to construct and then compute the norm of one billion matrices. Lucky for us their

size is only . 

U = make3qCommuting(3,7);
N = 1000; 
nrm = norm3tuple(U,N)

nrm = 3.1882

c_theta = 6/nrm

c_theta = 1.8819

Error estimate

Up to here we found 

 

and we have an estimate 

 .

This is interesting because it is larger than the currently know lower bound . However our

estimate comes from a numerical approximation, and we now wish to give a perfectly reliable lower bound for

 . 

Write  . We have  where 

and . Let  , so it is obtained like the above supremum, but only

over a grid of fineness . It is easy to see that  . Therefore 

 

Plugging in  (counting on the matlab computation of the  matrix to be precise up to 3 digits)

and the value of  we find the right hand side is great or equal than the following lower bound: 

N = 1000; 
d = 2*pi/N;
lower_bound = (6/3.19)*(1 - (6*d)/(3.18))

lower_bound = 1.8586

To conclude, we found the reliable lower bound , which gives the new lower bound . 

Here are the functions that were used in the above script: 
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function [u,v] = make2qCommuting(m,n)
% make2qCommuting - create the canonical pair of q-commuting matrices, 
% where q=exp(i*theta), and theta = 2*pi*m/n

D = 1:n; 
u = diag(exp(2*pi*i*D*m/n)); 
v = circshift(eye(n),1,2); 

end

function [u1,u2,u3] = make3qCommuting(m,n)
% make3qCommuting - create the "canonical" triple of q-commuting matrices, 
% where q=exp(i*theta), and theta = 2*pi*m/n 
% if nargout ==1 then the 3-tuple is all recorded in u1, as a stack of
% matrices

[u,v] = make2qCommuting(m,n); 
u1 = u; 
u2 = u*v; 
u3 = v; 

if nargout == 1
    u1 = cat(3,u1,u2,u3);
end

end

function max_norm = norm3tuple(U,N)
% norm3tuple - computes the norm of h = sum u_i+u_i^*
% U - nXnX3 3-tuple of q-commuting unitaries (output of make3qCommuting)
% N - optional input argument for fineness of approximation (default value is 10)

arguments 
    U (:,:,3) double
    N double = 10
end
    
dt = 1/N; 

t = 2*pi*[0:dt:1];
t = exp(1i*t);
len = length(t); 
sz1 = size(U,1);
max_norm = 0; 

for i=1:len
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    for j=1:len
        for k=1:ceil(len/sz1)
            X1 = t(i)*U(:,:,1);
            X2 = t(j)*U(:,:,2);
            X3 = t(k)*U(:,:,3);
            max_norm = max(max_norm,norm(X1+X1'+X2+X2'+X3+X3')); 
        end
    end
end

end
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