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The pathway to NC function theory
A research story

1 Introduction

This document contains some excerpts from Part B2 of my ERC grant proposal. The area of NC function
theory is not as widely recognized as some other areas competing for grants, I therefore thought that it would
be interesting for some readers if I told the mathematical story of how I was led to enter this area. My proposal
ended up not being funded, and I thought that it might be of use to somebody out there if I made the expository
parts of my proposal available online. The first section of this document is a brief overview of NC function
theory and of the objects of study. People familiar with NC function theory can skim the first section and
proceed quickly to the second section, which contains the account that describes how I was led into this field.

1.1 Motivation

A pervasive theme in operator algebra, since the early development of the field, has been the construction of
operator algebras that encode a particular mathematical object, and the subsequent study of the relationship
between the algebra and the underlying structure. Examples include the von Neumann algebra of a group or
of a measurable action on a space, and graph C*-algebras. The quintessential example is the algebra C(X)
of continuous functions on a compact Hausdorff space. Gelfand taught us that C(X) = C(Y) as algebras if
and only if X is homeomorphic to Y. This, in itself, is a beautiful example of a categorical equivalence, but
combined with Gelfand’s characterization of commutative C*-algebras, it suggests something deeper: every
operator algebra can be viewed as an algebra of “functions” on some “space”, and opens the door for the
paradigms of noncommutative analysis and noncommutative geometry.

This research proposal is situated within this tradition. At its core lies the relationship between an algebra
and the space on which it is defined. The classes of algebras that I have been drawn to study consist of bounded
noncommutative functions on subvarieties of operator balls. These algebras are neither as widely known as
the examples above nor as thoroughly studied. In this proposal I aim to demonstrate that they merit significant
attention and that they are linked to a compelling set of fundamental problems at the intersection of functional
analysis, operator theory, function theory and complex geometry.

The algebra H(D) of bounded analytic functions on the unit disc is the largest function algebra that
supports a functional calculus for all operators T € B(H) with || T'|| < 1. A detailed understanding of H*(ID) has
yielded profound operator-theoretic results [10, 29]. Extending this framework to d-tuples of noncommuting
operators, for which classical functional calculus is insufficient, leads one to consider certain completions of the
algebra of free polynomials in d noncommuting variables and to a family of new function algebras: the algebras
of bounded NC functions on a d-dimensional NC ball. There is not one single ball, but rather a distinct NC ball
Br and its corresponding algebra H*(Bg) for every operator space E. Pioneering work by Agler—McCarthy,
Popescu, and others indicates great potential, but these algebras and their quotients remain largely unexplored. I
propose a systematic study of NC function algebras, with the central goal of elucidating the precise relationship
between their algebraic structure and the underlying geometry.

Algebras of bounded NC functions on NC domains and their subvarieties are compelling for several addi-
tional reasons. First, because they form a rich class of tangible operator algebras that are amenable to analysis
in concrete terms. Second, this class of algebras contains a wide spectrum of operator algebras that have arisen
in disparate parts of functional analysis and independently of NC function theory. For example in [34, 35]
the class of algebras of bounded NC functions on subvarieties of the row ball was shown to include multi-
plier algebras of complete Pick spaces [13, 14, 16] as well as tensor algebras of subproduct systems [24, 38].
Representing operator algebras as algebras of NC functions provides tractable invariants, enlightening insights,
and new results (for example, applications to isomorphisms of subproduct system algebras in [34] or to the
problem of quasi-inner automorphisms of Davidson—Pitts’s noncommutative analytic Toeplitz algebras £, in
[35]). Third, studying algebras of bounded NC functions, and in particular classifying them, has driven the
discovery of purely NC function-theoretic and geometric theorems; for example: maximum modulus principle
and Nullstellensatze [34], NC Schwarz lemma and spectral Cartan uniqueness theorem [35], fixed point and
iteration theoretic results [9, 39], and the clarification of the notion of uniform continuity [17]. Recently, we
have observed that these algebras provide concrete representations of universal operator algebras generated by
an operator space and its quotients [36, 37], and this suggests deep interactions between operator space theory
and NC analytic function theory.
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1.2 Definitions and notation

Noncommutative (NC) analytic functions go back to Taylor’s general theory [40, 41], and the independent
theory by Voiculescu who, significantly, applied it to free probability [42, 43]. The theory has been developed
by several groups of researchers, coming from different subfields of functional analysis, and motivated by a
variety of applications in systems theory and control, operator theory, function theory, and algebra. We will
work within the modern approach of Kaliuzhnyi-Verbovetskyi and Vinnikov [26], Helton—Klep—McCullough
[19], Agler-McCarthy [3], Ball-Bolotnikov [7], Popescu [31, 32, 33] and others [4, 6, 8, 22, 21, 30].

NC sets and NC domains and operator balls

Let M, denote the n x n matrices over C. For an operator space E, we let M, (E) = M, ® E and define M((E) =
Uy M,(E). We remind the reader that an operator space E is just a subspace of a C*-algebra with the inherited
norm. This implies that M,(E) too is an operator space. We sometimes identify E = C¢ equipped with a
particular operator space structure (i.e. a family of matrix norms), in which M,(C%) = M¢ is the set of all
d-tuples of scalar matrices, and we then write M for M(CY) = U>_ M¢. A subset Q@ C M(E) is said to be an
NC set if it is closed under direct sums. We write Q, or Q(n) for QNM,(E), so Q = U ,Q,,. The similarity
envelope Q of an NC set Q consists of all tuples S™1XS := (S71X,S,...,51X,S) where X € Q, that is

Q=J{s'XS:X€Q, SeGL,}. (1)
n=1
An NC domain is an open and connected NC set. Every operator space E gives rise to the operator space ball

(or operator ball, for short) Bg
Br =U,_{X e M,(E): || X]||» < 1}. )

It will be useful to have a couple of concrete examples at hand. The row ball B, which is defined to be Bg for
E = C? with the row operator space structure, is given by

By :=Bca),, =X €M [ X||ow = | L XX |V/2 < 1} 3)
When E = min(£) is the minimal operator space over £;; we get the NC polydisc

D4 =By = {X €M7 X | = max X < 1}.

NC analytic functions — definition

A function f from an NC set Q C M(E) to M(F) is said to be an NC function if: (i) f is graded: X € Q, =
f(X) € M,(F); (ii) f respects direct sums: f(X ®Y) = f(X)® f(Y); and (iii) f respects similarities: if X € Q,,,
S € GL,, and if S7'XS € Q,, then f(S~'XS) = S~! £(X)S. For example, free polynomials are NC functions in
a natural way: if p(z) = ¥, ¢,z a free polynomial, then for A € M one evaluates p on A as follows

p(A) = ZCW ",

where for a word w in {1,2,...,d}" the monomial z* = z,, - - -z, evaluated at A" is given by A,, ---A,, . We
let C(z) = C(z1,...,z4) denote the algebra of free polynomials in d noncommuting variables, also referred to
as the free algebra. A more sophisticated class of NC functions is provided by NC rational functions [20, 23,
25, 28, 44]. Remarkably, every bounded NC function is analytic and has a Taylor series at every point; in fact,
for an NC function in an operator ball, the series around the origin converges in the entire ball [26].

NC varieties and the algebras of interest

Let Q be an NC domain. For us, an NC analytic variety %0 C Q is defined to be the joint zero set of a set of
bounded NC functions on Q. We define H(*0) to be the algebra of bounded NC functions on U equipped with
the supremum norm

1= 117 llee == sup [l (X)]].
Xey

We define A(0) to be the closure of polynomials in H*(0). In particular, when Q = U = B we have the
algebras A(Bg) and H*(Bg) at the center of the stage. If U is a homogeneous set, then A(2) equals the set of
bounded NC functions that extend to uniformly continuous functions on 0 [36]. For notational convenience,
we let o7 () denote either A(0) or H*(0), and refer to both as NC function algebras. 1t is easy to verify that
7 (*0), equipped with the supremum norm and with the pointwise operations of addition and multiplication,
satisfies the Blecher—Ruan—Sinclair axioms and so is an operator algebra [11].

2
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2 A pathway to noncommutative function algebras

So, how was I led to study algebras of bounded NC functions on NC varieties? Here is the story.

2.1 From CP-semigroups to subproduct systems to tensor algebras

In my PhD thesis I introduced and developed the notion of a subproduct system [38], as a technical tool for
analyzing multi-parameter CP-semigroups on von Neumann algebras and their dilations. In their very simplest
incarnation, subproduct systems are families X = {X,, },cn of Hilbert spaces such that

Xin CXn®X,, forallm,neN.

The elegant structure invites the pure mathematician to consider subproduct systems and their representations
as objects of study in themselves. Every subproduct system corresponds to a homogeneous ideal Iy in the free
algebra C(z), and representations of subproduct systems therefore correspond to tuples of operators satisfying
certain homogeneous polynomial relations. My PhD advisor Solel pointed out to me that this encapsulates
many structures and notions that have been studied in multivariable operator theory, and we were led in [38] to
consider the natural shift operators on the X-Fock space .7y = @®;_X,, and the various operator algebras they
generate. For the sake of the story, let me introduce just one: the tensor algebra <fx, which is the unital norm
closed algebra generated by the shifts. I was drawn to investigate these nonselfadjoint operator algebras along
the lines of the pervasive Gelfand-theme from the opening paragraph, and continued investigating them during
my postdoc. In [13], with Davidson and Ramsey, we proved the following theorem.

Theorem 2.1 (Davdison—Ramsey—Shalit). Let X and Y be subproduct systems with finite dimensional fibers.
Then, <y is isometrically isomorphic to <ty if and only if X and Y are isomorphic as subproduct system.

Later, in [24], with Kakariadis, we solved this problem for completely bounded isomorphism, and con-
ducted a detailed investigation into subproduct systems corresponding to monomial ideals.

2.2 From tensor algebras to commutative algebras of multipliers

Recall that every subproduct systems corresponds to a homogeneous ideal Ix in the free algebra C(z). In
the case that Iy contains the commutator ideal %, the X-Fock space .#x is contained in the symmetric Fock
space over X and the X-shifts commute, in which case <fx is a commutative operator algebra. Every such
commutative subproduct system corresponds to a polynomial ideal Jy = Iy /% in the algebra of commutative
polynomials C[z] = Clzy,...,z4] = C(z) /€ in d commuting variables.

Let .o7; denote the closure of the shift on symmetric Fock space. Arveson recognized [5] that <7; can be
identified as a closed subalgebra of the multiplier algebra .#; := Mult(Hﬁ) of a certain reproducing kernel
Hilbert space Hg on the unit ball B, that has come to be known as the Drury—Arveson space and has played
a central role in operator theory and function theory (see the survey [18]). The algebra .<7; is the closure of
the algebra C|z] in the multiplier norm. Davidson, Ramsey and I realized that when restricting attention to
commutative subproduct systems, we are classifying quotients of 7; by closed homogeneous ideals: @ =2
y/Jx. These being commutative algebras, we were intrigued by the possibility of classifying them in terms
of some natural geometric invariant.

In the case that the ideal Jx is radical, we obtained in [13] very sharp and satisfying results (some difficult
technical steps were completed only in the subsequent brilliant contribution by Hartz [16]). Let

Vx =Vp,(Jx) :={z€By: p(z) =0forall p € Jx}
be the subvariety of the ball corresponding to Jx. The main results of [13, 16] are as follows.

Theorem 2.2 (Davidson—-Ramsey—Shalit). Let X,Y be subproduct systems such that Jx,Jy are radical. Then,
oy and <ty are isometrically isomorphic iff there is a unitary U : C? — C¥ such that U(Vyx) = Vy.

Theorem 2.3 (Davidson—Ramsey—Shalit, Hartz). Let XY be subproduct systems such that Jx,Jy are radical.

Then, o7x and < are isomorphic iff Vx and Vy are biholomorphic, and this happens iff there is a linear bijection
A: C4 — C¢ such that A(Vyx) = Vy.

This has further striking consequences; e.g. if Vx is irreducible or is a nonlinear hypersurface, then if <y
and &% are isomorphic then they must be isometrically isomorphic, and in fact unitarily equivalent.
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2.3 The non radical gap

The paper [13] with Davidson and Ramsey was generally well-received, but I recall one penetrating referee
report criticizing us for obtaining the best results only for radical ideals. At the time, I felt that this criticism
was somewhat unfair, because I thought that, by Hilbert’s Nullstellensatz, we couldn’t expect to recover algebra
from geometry unless our ideals were radical. The question of how to handle the non radical case kept occu-
pying me, but I wasn’t satisfied with the approaches suggested by algebraic geometry. It took me some time to
find a solution that aligned with my perspective and mathematical taste.

2.4 The isomorphism problem for complete Pick algebras and the elusive category

Before being able to find the geometric invariant for non radical ideals, Davidson, Ramsey and I moved from
tensor algebras, and began studying the isomorphism problem for complete Pick algebras. The class of com-
plete Pick algebras had a small intersection with that of tensor algebras, but contained a rich variety of algebras
that generalize in a completely different direction from what we studied earlier.

The setting is as follows: let H[% be the Drury—Arveson space, the RKHS on the unit ball B; C C¢ with
reproducing kernel

k(ry) = (1= (xy) 7

and let A4, = Mult(Hg) be its multiplier algebra. Let V C B, be a variety, by which we mean the joint zero set
of a family of multipliers. Let

Hy :H[ﬂv ~ gpan{k, :v eV},

and put .#y = Mult(Hy). It is well known that .#; has the complete Pick property [2], and it follows that
My = My |V. By the Agler—McCarthy theorem [1], every irreducible multiplier algebra with the complete Pick
property is of this form.

In [14], Davidson, Ramsey and I proved the that .#y = .# completely isometrically if and only if V= W
via an automorphism of AutB,. The homogeneous case suggested that .#y = .#y algebraically is equivalent
to V = W biholomorphically. In [27] with Kerr and McCarthy, we showed that if V and W are one-dimensional
subvarieties of the ball with no singularities or self-intersections on the boundary, then .#y = .#y algebraically
if and only V and W are biholomorphic. It started to seem as though the category of subvarieties with biholo-
morphisms is equivalent to the category of complete Pick algebras with algebraic isomorphisms. However
with Hartz and Davidson we showed this fails already for analytic discs with a single self-intersection on the
boundary [12].

In [14], we showed that if V and W are a finite union of irreducible or discrete varieties then .#y = .4y as
algebras implies that V = W via a multiplier biholomorphism; i.e., the component functions of the biholomor-
phism are not merely analytic, they are elements of the multiplier algebra .#;. However, in general, multiplier
biholomorphism does not imply that the algebras are isomorphic [12]. The reason: multiplier biholomorphism
is not an equivalence relation! Since algebraic isomorphism is an equivalence relation for multiplier algebras,
this raised the question whether the variety V is a complete invariant for the algebra .y ; if it is, then what are
the morphisms of the corresponding category; and if it isn’t, then what is the correct invariant?

2.5 NC varieties — the missing link

Around 2015 I realized that all the operator algebras that I have been working on can be realized as algebras
</ (°0) of bounded NC functions on NC subvarieties of the row ball B,. These connections (and many more)
were sorted out by Salomon, Shamovich and myself in the two landmark papers [34] and [35]. For example,
if X is a product system and Ix the corresponding ideal in C(z), then </x = A(*U) — the algebra of uniformly
continuous NC functions on ¥, where U is the NC variety

U =Vy,(Ix) ={X€B,:p(X)=0forall pelix}.
In [34] we obtained the following strengthened version of Theorem 2.1.

Theorem 2.4 (Salomon-Shalit-Shamovich). If 0,207 C B, are homogeneous varieties in the row ball, then
A(D) is isometrically isomorphic to A(20) if and only if there is unitary U : C¢ — C4 such that U(0) = 2. In
fact, every isometric isomorphism @: A(0) — A(20) is implemented by a composition by a free automorphism
a € Aut®By,, in the sense that

o(f)=foa, forall feA(D).
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Note that this theorem is stronger than Theorem 2.1, because it not only gives conditions for the existence
of an isometric isomorphism, but it also describes how every isometric isomorphism is given. This gives a
categorical equivalence between the algebras A(0), U C B, (equivalently, the category of tensor algebras o7y
with dimX; = d) with completely isometric isomorphisms, and the category of homogeneous subvarieties of
B, with restrictions of automorphisms of the ambient B, as morphisms. These improvements are due to the
passage to an NC function algebraic setting, revealing the correct geometric invariant.

In particular, specializing Theorem 2.4 to commutative subproduct systems, we recover Theorem 2.2 as
well as its generalization to non radical ideals, thereby closing part of the non radical gap.

In a similar fashion, we find a candidate for the classifying invariant for complete Pick algebras. First, we
proved that the multiplier algebra .#; = Mult(Hj) can be identified as

%d g[—Im(@%d)a

where
By, :V%d(%) = {X € By ZX,'X]‘ :Xin foralli,j= 1,,d}

is the free commutative ball. We then have the completely isometric identification .#y = H* () with the
algebra of bounded NC functions on the variety U, which a sort of NC Zariski closure of V

B =Vess,(Lu,(V)),

where
Luy(V)i={f € My: f(z)=Oforall z € V}

is the annihilator of V in .#;. The NC varieties play the role of complete invariants of the algebras o7 (0)
up to completely isometric isomorphism [34]. However, they must fail to serve as complete invariants for the
algebras up to completely bounded isomorphism — the correct geometric invariant is the similarity envelope
of the NC variety, as we showed in [35].

2.6 Bonus: the perfect Nullstellensatz

We have seen above that noncommutative varieties can play the part of a geometric invariant, even in the
case when the algebras under consideration are commutative. A heuristic explanation for why this happens
is provided by the following perfect Nullstellensatz, which Salomon, Shamovich and I rediscovered [34] (this
result follows from a more general old result of Eisenbud—Hochster [15]).

Let €M be the NC set consisting of all d-tuples of commuting n x n matrices, for all . Put

Veppe (J) = {X € €M : p(X) =0 forall p € J},

and
I (Vema (V) = {p € C[z] : p(X) =0 for all X € Vg (J)}-

Theorem 2.5 (The perfect Nullstellensatz). Let J be a polynomial ideal in Clz] = C[zy,...,z4]. Then

Iep (Vema (V) = J.

Classical varieties consisting of scalar zeros can be identified with character spaces, that is, with spaces of
one-dimensional representations, and can never give us more than Hilbert’s Nullstellensatz:

e (Veu () = V7.

In order to deal with multiplicity of zeros, we must work with the NC variety Vi« (/) consisting of the matrix
zeros of the ideal J. The NC variety corresponds to finite dimensional representation of C|z]/J, and can deal
with multiplicity once the dimensions are large enough. It is worth pointing out that if we took the variety
consisting of “all" the zeros of the ideal J (i.e. including infinite dimensional representations) then the theorem
would be a tautology provable by a couple of lines of abstract nonsense, on the one hand, and useless on the
other, because how does one get a handle on “all” these zeros? The NC variety provides just the right amount
of noncommutativity to serve as a nontrivial yet tangible invariant, which is strong enough to recover J.
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