Category Archives: Operator theory

Souvenirs from Amsterdam

(I am writing a post on hot trends in mathematics in the midst of war, completely ignoring it. This seems like the wrong thing to do, but my urge to write has overcome me. To any reader of this blog: I wish you a peaceful night, wherever you are).

Last week I returned from the yearly “International Workshop on Operator Theory and Applications”, IWOTA 2014 for short (see the previous post for the topic of my own talk, or this link for the slides).

This conference was very broad (and IWOTA always is). One nice thing about broad conferences is that you are able sometimes to identify a growing trend. In this talk I got particularly excited by a series of talks on “noncommutative function theory” or “free analysis”. There was a special session dedicated to this topic, but I was mostly inspired by a semi-plenary talk by Jim Agler, and also by two interesting talks by Joe Ball and Spela Spenko. I also attended nice talks related to this subject by Victor Vinnikov, Dmitry Kalyuhzni-Verbovetskyi, Baruch Solel, Igor Klep and Bill Helton. This topic has attracted the attention of many operator theorists, for its applications as well as for its inherent beauty, and seems to be accelerating in the last several years; I will only try to give a taste of some neat things that are going on, by telling you about Agler’s talk. What I will not be able to do is to convey Agler’s intense and unique mathematical charisma.

Here is the program of the conference, so you can check out other things that were going on there.

Continue reading Souvenirs from Amsterdam

An old mistake and a new version (or: Hilbert, Poincare, and us)

[Update June 28, 2014: This post originally included stories about Poincare and Hilbert making some mistakes. At some point after posting this I realised how unfair it is to talk about somebody else’s mistake (even if it is Hilbert and Poincare) without giving precise references. Instead of deleting the stories, I’ll insert some comments where I think I am unfair. Sorry!]

I was recently forced to reflect on mistakes in mathematics. The reason was that my collaborators and I discovered a mistake in an old paper (16 years old), which forced us to make a significant revision to two of our papers.

A young student of mathematics may consider a paper which contains a mistake to be a complete disaster. (By “mistake” I don’t mean a gap – some step that is not sufficiently well justified (where “sufficiently well” can be a source of great controversy). By “mistake” I mean a false claim). But it turns out that mistakes are inevitable. A paper that contains a mistake is a terrible headache, indeed, but not a disaster.

Arveson once told me: “Everybody makes mistakes. And I mean EVERYBODY”. And he was right. There are two well known stories about Hilbert and Poincare which I’d like to repeat for the reader’s entertainment, and also to make myself feel better before telling you about the mistake my collaborators and I overlooked.

First story: [I think I first read the story about Hilbert in Rota’s “Ten Lesson’s I wish I had been Taught” (lesson 6)]: When a new set of Hilbert’s collected papers was prepared (for his birthday, the story tells), it was discovered that the papers were full of mistakes and could not be published as they were. A young and promising mathematician (Olga Taussky-Todd) worked for three years to correct (almost) all the mistakes. Finally, when the new volume of collected (and corrected) papers was presented to Hilbert, he did not notice any change. What is the moral here? One moral, I suppose, is that even Hilbert made mistakes (hence we are all allowed to). The second is that many mistakes — say, the type of mistakes Hilbert would make — are not fatal: if the mistakes are planted in healthy garden, they can be weeded out and replaced by true alternatives, often-times leaving the important corollaries intact.

[Update June 28: A reference to Rota’s “10 Lessons” is not good enough, and neither is reference to the Wikipedia article on Olga Taussky-Todd, which in turn references Rota’s “Indiscrete Thoughts”, where “10 Lessons” appear.]

Second story: actually two stories, about Poincare.  Poincare made two very important mistakes! First mistake: in 1888 Poincare submitted a manuscript to Acta Mathematica – as part of a competition in honour of the King of Norway and Sweden – in which, among other things (for example inventing the field of dynamical systems), he claimed that the solutions of the 3-body problem (restricted to the plane) are stable (meaning roughly that the inhabitants of a solar system with a sun and two planets can rest assured that the planets in their solar system will continue orbiting more or less as they do forever, without collapsing to the sun or diverging to infinity). After winning the competition, and after the paper was published (and probably in part due to the assistant editor of Acta, Edvard Phragmen, asking Poincare for numerous clarifications during the editorial process), Poincare discovered that his manuscript had a serious error in it. Poincare corrected his mistake, inventing Chaos while he was at it.

[Update June 28: This story is well documented. I learned it from Donal Oshea’s book “The Poincare Conjecture: In Search of the Shape of the Universe” , but it is easy to find online references, too]. 

Second mistake: In 1900 Poincare claimed that if the homology of a compact 3 manifold is trivial, then it is homeomorphic to a sphere. He himself found out his mistake, and provided a counterexample. In order to show that his example is indeed a counter example he had to invent a new topological invariant: the fundamental group. He computed the fundamental group of his example and saw that it is different from the one of the sphere. But this led him to ask: if a closed manifold has a trivial fundamental group, must it be homeomorphic to the 3-sphere? This is known as the Poincare conjecture, of course, and the rest is history.

[Update June 28: Here I should have given a reference of where exactly Poincare claimed that trivial homology implies a space is a sphere. I don’t know it (it probably also appears in Oshea’s book)]

The moral here? I don’t know. But it is nice to add that after making his first mistake, Poincare and Mittag-Leffler (the editor) set a good example by recalling all published editions and replacing them with a new and correct version.

So that’s what I’ll try to imitate now.

Continue reading An old mistake and a new version (or: Hilbert, Poincare, and us)

Souvenirs from the Black Forest

Last week I attended a workshop titled “Hilbert modules and complex geometry” in MFO (Oberwolfach). In this post I wish to tell about some interesting things that I have learned. There were many great talks to choose from. Below is a sample, in short form, with links.

Continue reading Souvenirs from the Black Forest

K-spectral sets and the holomorphic functional calculus

In two previous posts I discussed the holomorphic functional calculus as part of a standard course in functional analysis (lectures notes 18 and 19). In this post I wish to discuss a slightly different approach, which relies also on the notion of K-spectral sets, and relies a little less on contour integration of Banach-space valued functions.

In my very personal opinion this approach is a little more natural then the standard one, and it would be even more natural if one was able to altogether remove the dependence on Banach-space valued integrals (unfortunately, right now I don’t know how to do this completely).

Continue reading K-spectral sets and the holomorphic functional calculus

Advanced Analysis, Notes 19: The holomorphic functional calculus II (definition and basic properties)

In this post we continue our discussion of the holomorphic functional calculus for elements of a Banach algebra (or operators). The beginning of this discussion can be found in Notes 18. Continue reading Advanced Analysis, Notes 19: The holomorphic functional calculus II (definition and basic properties)

Spectral sets and distinguished varieties in the symmetrized bidisc

In this post I will write about a new paper, “Spectral sets and distinguished varieties in the symmetrized bidisc“, that Sourav Pal and I posted on the arxiv, and give the background to understand what we do in that paper.

Continue reading Spectral sets and distinguished varieties in the symmetrized bidisc

Essential normality, essential norms and hyper rigidity

Matt Kennedy and I recently posted on the arxiv a our paper “Essential normality, essential norms and hyper rigidity“. This paper treats Arveson’s conjecture on essential normality (see the first open problem in this previous post). From the abstract:

Let $latex S = (S_1, ldots, S_d)$ denote the compression of the $latex d$-shift to the complement of a homogeneous ideal $latex I$ of $latex mathbb{C}[z_1, ldots, z_d]$. Arveson conjectured that $latex S$ is essentially normal. In this paper, we establish new results supporting this conjecture, and connect the notion of essential normality to the theory of the C*-envelope and the noncommutative Choquet boundary.

Previous works on the conjecture verified it for certain classes of ideals, for example ideals generated by monomials, principal ideals, or ideals of “low dimension”. In this paper we find results that hold for all ideals, but – alas! – these are only partial results.

Denote by $latex Z = (Z_1, ldots, Z_d)$ the image of $latex S$ in the Calkin algebra (here as in the above paragraph, $latex S$ is the compression of the $latex d$-shift to the complement of an ideal $latex I$ in $latex H^2_d$). Another way of stating Arveson’s conjecture is that the C*-algebra generated by $latex Z$ is commutative. This would have implied that the norm closed (non-selfadjoint) algebra generated by $latex Z$ is equal to the sup-norm closure of polynomials on the zero variety of the ideal $latex I$. One of our main results is that we are able to show that the non-selfadjoint algebra is indeed as the conjecture predicts, and this gives some evidence for the conjecture. This is also enough to obtain a von Neumann inequality on subvarieties of the ball, what would have been a consequence of the conjecture being true.

Another main objective is to connect between essential normality and the noncommutative Choquet boundary (see this and this previous posts). A main result here is  we have is that the tuple $latex S$ is essentially normal if and only if it is hyperrigid  (meaning in particular that all irreducible representations of $latex C^*(S)$ are boundary representations).

Another one bites the dust (actually many of them)

Boom. In the arxiv mailing list of a few days ago appeared the following paper: “Interlacing Families II: Mixed Characteristic Polynomials and The Kadison-Singer Problem” (Markus, Spielman and Srivastava). The abstract says:

We use the method of interlacing families of polynomials to prove Weaver’s conjecture KS2, which is known to imply a positive solution to the Kadison-Singer problem via a projection paving conjecture of Akemann and Anderson. Our proof goes through an analysis of the largest roots of a family of polynomials that we call the “mixed characteristic polynomials” of a collection of matrices.

From the abstract it might not be immediately clear that this paper claims to solve the Kadison-Singer problem, because it says that their result implies KS via another conjecture; what they mean, however, is that the conjecture they prove was proven to be equivalent to another conjecture which has already been shown in the past to be equivalent to a positive solution to the Kadison-Singer problem.

Blog posts on the solution appeared here and here, with links to excellent references. I will add here a few remarks of my own.

Continue reading Another one bites the dust (actually many of them)

A sneaky proof of the maximum modulus principle

The April 2013 issue of the American Mathematical Monthly has just appeared, and with it my small note “A Sneaky Proof of the Maximum Modulus Principle”. Here is a link to the current issue on the journal’s website, and here is a link to a version of the paper on my homepage. As the title suggest, the note contains a new proof — which I find extremely cool — for the maximum modulus principle from the theory of complex variables. The cool part is that the proof is based on some basic linear algebra. The note is short and very easy, and I am not going to say anything more about the proof, except that it relates to some of my “real” research (the way in which it relates can be understood by reading the Note and its references).

I am writing this post not only to publicize this note, but also to record somewhere my explanation why I have been behaving in a sneaky fashion. Indeed, this is the first paper that I wrote which I did not post on the Arxiv. Why?

Unlike research journals, the American Mathematical Monthly is a journal which has, if I am not mistaken, actual subscribers. I mean real people, some of them perhaps old school (like myself), and I could see them waiting to receive their copy in the mailbox, and then when the new issue finally arrives they gently open the envelope — or perhaps they tear it open, depending on their custom — after which they sit down and browse through the fresh issue. I could believe that there are such persons (for I myself am such a person) that do not look at the online version of the journal even though they have access, because that would spoil their fun with the paper copy which is to arrive a few days later.

Now I wouldn’t like to spoil a small pleasure of a subscriber, somewhere out there. So I did not post the Note on the Arxiv, lest it pop up on somebody’s mailing list. “Oh, this I have already seen…”. I shall not be resposible for such spoilers! So I decided to keep my note relatively secret, putting it on my homepage, but putting off the Arxiv until the journal really gets published and all the physical copies are safely in the mailboxes of all subscribers. I made this decision about a year ago from now, and to tell the truth I felt that a year is a terribly long time to wait. In the end, this year appears much much shorter from this end than from the other one.

(I guess that it does not matter much if I put it on the Arxiv now: in the meanwhile I discovered that google scholar has managed to figure out that such a note exists on somebody’s webpage. Probably I will post it on the Arxiv, for the sake of all things being in good order).

Advanced Analysis, Notes 17: Hilbert function spaces (Pick’s interpolation theorem)

In this final lecture we will give a proof of Pick’s interpolation theorem that is based on operator theory.

Theorem 1 (Pick’s interpolation theorem): Let $latex z_1, ldots, z_n in D$, and $latex w_1, ldots, w_n in mathbb{C}$ be given. There exists a function $latex f in H^infty(D)$ satisfying $latex |f|_infty leq 1$ and 

$latex f(z_i) = w_i ,, ,, i=1, ldots, n$

if and only if the following matrix inequality holds:

$latex big(frac{1-w_i overline{w_j}}{1 – z_i overline{z_j}} big)_{i,j=1}^n geq 0 .$

Note that the matrix element $latex frac{1-w_ioverline{w_j}}{1-z_ioverline{z_j}}$ appearing in the theorem is equal to $latex (1-w_i overline{w_j})k(z_i,z_j)$, where $latex k(z,w) = frac{1}{1-z overline{w}}$ is the reproducing kernel for the Hardy space $latex H^2$ (this kernel is called the Szego kernel). Given $latex z_1, ldots, z_n, w_1, ldots, w_n$, the matrix

$latex big((1-w_i overline{w_j})k(z_i,z_j)big)_{i,j=1}^n$

is called the Pick matrix, and it plays a central role in various interpolation problems on various spaces.

I learned this material from Agler and McCarthy’s monograph [AM], so the following is my adaptation of that source.

(A very interesting article by John McCarthy on Pick’s theorem can be found here).

Continue reading Advanced Analysis, Notes 17: Hilbert function spaces (Pick’s interpolation theorem)