Category Archives: Research

Souvenirs from Amsterdam

(I am writing a post on hot trends in mathematics in the midst of war, completely ignoring it. This seems like the wrong thing to do, but my urge to write has overcome me. To any reader of this blog: I wish you a peaceful night, wherever you are).

Last week I returned from the yearly “International Workshop on Operator Theory and Applications”, IWOTA 2014 for short (see the previous post for the topic of my own talk, or this link for the slides).

This conference was very broad (and IWOTA always is). One nice thing about broad conferences is that you are able sometimes to identify a growing trend. In this talk I got particularly excited by a series of talks on “noncommutative function theory” or “free analysis”. There was a special session dedicated to this topic, but I was mostly inspired by a semi-plenary talk by Jim Agler, and also by two interesting talks by Joe Ball and Spela Spenko. I also attended nice talks related to this subject by Victor Vinnikov, Dmitry Kalyuhzni-Verbovetskyi, Baruch Solel, Igor Klep and Bill Helton. This topic has attracted the attention of many operator theorists, for its applications as well as for its inherent beauty, and seems to be accelerating in the last several years; I will only try to give a taste of some neat things that are going on, by telling you about Agler’s talk. What I will not be able to do is to convey Agler’s intense and unique mathematical charisma.

Here is the program of the conference, so you can check out other things that were going on there.

Continue reading Souvenirs from Amsterdam

The isomorphism problem: update

Ken Davidson, Chris Ramsey and I recently uploaded a new version of our paper “Operator algebras for analytic varieties” to the arxiv. This is the second paper that was affected by a discovery of a mistake in the literature, which I told about in the previous post. Luckily, we were able to save all the results in that paper, but had to work a a little harder than what we thought was needed in our earlier version. The isomorphism problem for complete Pick algebras (which I like to call simply “the isomorphism problem”) has been one of my favorite problems during the last five years. I wrote four papers on this problem, with five co-authors. I want to give a short road-map to my work on this problem. Before I do so, here is  link to the talk that I will give in IWOTA 2014 about this stuff. I think (hope) this talk is a good introduction to the subject. The problem is about the classification of a large class of non-selfadjoint operator algebras – multiplier algebras of complete Pick spaces – which can also be realized as certain algebras of functions on analytic varieties. These algebras all have the form

$latex M_V = Mult(H^2_d)big|_V$

where $latex V$ is a subvariety of the unit ball and $latex Mult(H^2_d)$  denotes the multiplier algebra of Drury-Arveson space (see this survey), and therefore $latex M_V$ is the space of all restrictions of multipliers to $latex V$. The hope is to show that the geometry of the variety $latex V$ is a complete invariant for the algebras $latex M_V$, in various senses that will be made precise below.

Continue reading The isomorphism problem: update

An old mistake and a new version (or: Hilbert, Poincare, and us)

[Update June 28, 2014: This post originally included stories about Poincare and Hilbert making some mistakes. At some point after posting this I realised how unfair it is to talk about somebody else’s mistake (even if it is Hilbert and Poincare) without giving precise references. Instead of deleting the stories, I’ll insert some comments where I think I am unfair. Sorry!]

I was recently forced to reflect on mistakes in mathematics. The reason was that my collaborators and I discovered a mistake in an old paper (16 years old), which forced us to make a significant revision to two of our papers.

A young student of mathematics may consider a paper which contains a mistake to be a complete disaster. (By “mistake” I don’t mean a gap – some step that is not sufficiently well justified (where “sufficiently well” can be a source of great controversy). By “mistake” I mean a false claim). But it turns out that mistakes are inevitable. A paper that contains a mistake is a terrible headache, indeed, but not a disaster.

Arveson once told me: “Everybody makes mistakes. And I mean EVERYBODY”. And he was right. There are two well known stories about Hilbert and Poincare which I’d like to repeat for the reader’s entertainment, and also to make myself feel better before telling you about the mistake my collaborators and I overlooked.

First story: [I think I first read the story about Hilbert in Rota’s “Ten Lesson’s I wish I had been Taught” (lesson 6)]: When a new set of Hilbert’s collected papers was prepared (for his birthday, the story tells), it was discovered that the papers were full of mistakes and could not be published as they were. A young and promising mathematician (Olga Taussky-Todd) worked for three years to correct (almost) all the mistakes. Finally, when the new volume of collected (and corrected) papers was presented to Hilbert, he did not notice any change. What is the moral here? One moral, I suppose, is that even Hilbert made mistakes (hence we are all allowed to). The second is that many mistakes — say, the type of mistakes Hilbert would make — are not fatal: if the mistakes are planted in healthy garden, they can be weeded out and replaced by true alternatives, often-times leaving the important corollaries intact.

[Update June 28: A reference to Rota’s “10 Lessons” is not good enough, and neither is reference to the Wikipedia article on Olga Taussky-Todd, which in turn references Rota’s “Indiscrete Thoughts”, where “10 Lessons” appear.]

Second story: actually two stories, about Poincare.  Poincare made two very important mistakes! First mistake: in 1888 Poincare submitted a manuscript to Acta Mathematica – as part of a competition in honour of the King of Norway and Sweden – in which, among other things (for example inventing the field of dynamical systems), he claimed that the solutions of the 3-body problem (restricted to the plane) are stable (meaning roughly that the inhabitants of a solar system with a sun and two planets can rest assured that the planets in their solar system will continue orbiting more or less as they do forever, without collapsing to the sun or diverging to infinity). After winning the competition, and after the paper was published (and probably in part due to the assistant editor of Acta, Edvard Phragmen, asking Poincare for numerous clarifications during the editorial process), Poincare discovered that his manuscript had a serious error in it. Poincare corrected his mistake, inventing Chaos while he was at it.

[Update June 28: This story is well documented. I learned it from Donal Oshea’s book “The Poincare Conjecture: In Search of the Shape of the Universe” , but it is easy to find online references, too]. 

Second mistake: In 1900 Poincare claimed that if the homology of a compact 3 manifold is trivial, then it is homeomorphic to a sphere. He himself found out his mistake, and provided a counterexample. In order to show that his example is indeed a counter example he had to invent a new topological invariant: the fundamental group. He computed the fundamental group of his example and saw that it is different from the one of the sphere. But this led him to ask: if a closed manifold has a trivial fundamental group, must it be homeomorphic to the 3-sphere? This is known as the Poincare conjecture, of course, and the rest is history.

[Update June 28: Here I should have given a reference of where exactly Poincare claimed that trivial homology implies a space is a sphere. I don’t know it (it probably also appears in Oshea’s book)]

The moral here? I don’t know. But it is nice to add that after making his first mistake, Poincare and Mittag-Leffler (the editor) set a good example by recalling all published editions and replacing them with a new and correct version.

So that’s what I’ll try to imitate now.

Continue reading An old mistake and a new version (or: Hilbert, Poincare, and us)

Souvenirs from the Black Forest

Last week I attended a workshop titled “Hilbert modules and complex geometry” in MFO (Oberwolfach). In this post I wish to tell about some interesting things that I have learned. There were many great talks to choose from. Below is a sample, in short form, with links.

Continue reading Souvenirs from the Black Forest

Spectral sets and distinguished varieties in the symmetrized bidisc

In this post I will write about a new paper, “Spectral sets and distinguished varieties in the symmetrized bidisc“, that Sourav Pal and I posted on the arxiv, and give the background to understand what we do in that paper.

Continue reading Spectral sets and distinguished varieties in the symmetrized bidisc

Essential normality, essential norms and hyper rigidity

Matt Kennedy and I recently posted on the arxiv a our paper “Essential normality, essential norms and hyper rigidity“. This paper treats Arveson’s conjecture on essential normality (see the first open problem in this previous post). From the abstract:

Let $latex S = (S_1, ldots, S_d)$ denote the compression of the $latex d$-shift to the complement of a homogeneous ideal $latex I$ of $latex mathbb{C}[z_1, ldots, z_d]$. Arveson conjectured that $latex S$ is essentially normal. In this paper, we establish new results supporting this conjecture, and connect the notion of essential normality to the theory of the C*-envelope and the noncommutative Choquet boundary.

Previous works on the conjecture verified it for certain classes of ideals, for example ideals generated by monomials, principal ideals, or ideals of “low dimension”. In this paper we find results that hold for all ideals, but – alas! – these are only partial results.

Denote by $latex Z = (Z_1, ldots, Z_d)$ the image of $latex S$ in the Calkin algebra (here as in the above paragraph, $latex S$ is the compression of the $latex d$-shift to the complement of an ideal $latex I$ in $latex H^2_d$). Another way of stating Arveson’s conjecture is that the C*-algebra generated by $latex Z$ is commutative. This would have implied that the norm closed (non-selfadjoint) algebra generated by $latex Z$ is equal to the sup-norm closure of polynomials on the zero variety of the ideal $latex I$. One of our main results is that we are able to show that the non-selfadjoint algebra is indeed as the conjecture predicts, and this gives some evidence for the conjecture. This is also enough to obtain a von Neumann inequality on subvarieties of the ball, what would have been a consequence of the conjecture being true.

Another main objective is to connect between essential normality and the noncommutative Choquet boundary (see this and this previous posts). A main result here is  we have is that the tuple $latex S$ is essentially normal if and only if it is hyperrigid  (meaning in particular that all irreducible representations of $latex C^*(S)$ are boundary representations).

Souvenirs from Bangalore

I recently returned from the two week long workshop and conference Recent Advances in Operator Theory and Operator Algebras which took place in ISI Bangalore. As I promised myself before going, I was on the look-out for something new to be excited about and to learn. The event (beautifully organized and run) was made of two parts: a workshop, which was a one week mini-school on several topics (see here for topics) and a one week conference. It was very very broad, and there were several talks (or informal discussions) which I plan to pursue further.

In this post and also perhaps in a future one I will try to work out (for my own benefit, mostly) some details of a small part of the research presented in two of the talks. The first part is the Superproduct Systems which arise in the theory of E_0-semigroups on type II_1 factors (following the talk of R. Srinivasan). The second (which I will not discuss here, but perhpas in the future) is the equivalence between the Baby Corona Theorem and the Full Corona Theorem (following the mini-course given by B. Wick). In neither case will I describe the most important aspect of the work, but something that I felt was urgent for me to learn. 

Continue reading Souvenirs from Bangalore

The remarkable Hilbert space H^2 (part III – three open problems)

This is the last in the series of three posts on the d–shift space, which accompany/replace the colloquium talk I was supposed to give. The first two parts are available here and here. In this post I will discuss three open problems that I have been thinking about, which are formulated within the setting of $latex H^2_d$.

Continue reading The remarkable Hilbert space H^2 (part III – three open problems)

On the isomorphism question for complete Pick multiplier algebras

In this post I want to tell you about our new preprint, “On the isomorphism question for complete Pick multiplier algebras“,  which Matt Kerr, John McCarthy and myself just uploaded to the arXiv. Very broadly speaking, the motif of this paper is the connection between algebra and geometry; to be a little bit more precise, it is the connection between complex geometry and nonself-adjoint operator algebras. Continue reading On the isomorphism question for complete Pick multiplier algebras

Essential normality and the decomposability of algebraic varieties

I am very proud, because few days ago Matt Kennedy and I have had our new paper, Essential normality and the decomposability of algebraic varieties, published in the New York Journal of Mathematics.

In this paper we treat a strong version of a conjecture of Arveson, which we call the Arveson-Douglas conjecture, and we obtain some new results in particular cases (the conjecture is still far from being settled). I think that we do a good job in the introduction of the paper explaining what this conjecture is and what we do, so I invite you to take a look.

Now I want to say a few words about the New York Journal of Mathematics. I’ll say it in a different post.