This is a write-up of the second lecture in the course given by Haim Schochet. For the first lecture and explanations, see the previous post.
I will very soon figure out how to put various references online and post links to that, too.
This is a write-up of the second lecture in the course given by Haim Schochet. For the first lecture and explanations, see the previous post.
I will very soon figure out how to put various references online and post links to that, too.
Claude (Haim) Schochet is spending this semester at the Technion, and he kindly agreed to give a series of lectures on K-theory. This mini-course is called “Topological K-theory of C*-algebras for the Working Mathematician”.
There will be seven lectures (they take place in Amado 814, Mondays 11:00-12:30):
Since the pace will be really fast and the scope very broad, I plan to write up some of the notes I take, to help myself keep track of these lectures. When I write I will probably introduce some mistakes, and this is completely my fault. I will also probably not be able to hold myself from making some silly remarks, for which only I am responsible.
I also hope that these notes I post may help someone who has missed one or several of the talks make up and come to the next one.
The first talk took place last Monday. To be honest I wasn’t 100% on my guard since I heard such crash courses so many times, I was sure that I’ve heard it all before but very soon I was in territory which is not so familiar to me (The title “crash course” was justified!). Maybe I will make up some of the things I write, or imagine that I heard them.
(The next lectures will be on stuff that is more advances and I will take better notes, and hopefully provide a more faithful representation of the actual lecture).
I will refer in short to the following references:
1. Pedersen – C*-algebras and their automorphism groups.
2. Brown and Ozawa – C*-algebras and finite dimensional approximation.
3. Davidson – C*-algebras by example.
4. Dixmier – C*algebras
5. Blackadar – K-theory for operator algebras
Continue reading Topological K-theory of C*-algebras for the Working Mathematician – Lecture 1